Analyse comparative de la rentabilité des systèmes de production de coton biologique, conventionnel et transgénique au Burkina Faso

G. Vognan1*, L. Glin1, I. Bamba1, B.M. Ouattara1 & G. Nicolay2

Keywords: Gross margin- Sensitivity analysis- Cotton system- Burkina Faso

Résumé
Cette recherche vise à comparer la rentabilité du système coton (coton et cultures de rotation) selon les trois modes de production (conventionnel, biologique et transgénique). L’étude s’est déroulée au Burkina Faso sur un échantillon de 180 exploitations dont 60 en système coton biologique, 60 en système coton transgénique et 60 en système coton conventionnel. Il ressort des résultats que les coûts de production des diverses spéculations en modes de production transgénique et conventionnel sont plus élevés que ceux du mode biologique. Les différences entre les coûts de production des trois modes de production sont hautement significatives en particulier pour le coton, le maïs, le sorgho et l’arachide. Sur le plan de la rentabilité, il n’y a pas de différence significative entre les marges dégagées par les différents modes de production du coton. Par contre, l’analyse de la sensibilité a montré que le coton biologique est plus résilient sur le plan financier face aux fluctuations des prix du coton et des intrants chimiques. En somme, la production du coton biologique apparait comme une option viable sur le plan socioéconomique et pourrait être considérée comme une opportunité dans la lutte pour l’éradication de la pauvreté dans le contexte particulier de changement climatique.

Summary
Comparative Analysis of the Profitability of Organic, Conventional, and Transgenic Cotton Farming Systems in Burkina Faso

This research aimed to compare the profitability of cotton cropping systems (cotton and rotation crops) according to three production modes: organic, conventional, and transgenic. The study was conducted in Burkina Faso on a sample of 180 households of which 60 households from organic cotton system, 60 households from conventional cotton system, and 60 households from transgenic cotton system. It came out that the production costs of the various crops in the transgenic and conventional systems are higher than those of the organic system. The differences in the production costs for the three modes of production are highly significant especially for cotton, corn, sorghum and groundnut. In terms of profitability, there’s no significant difference in the margins generated by the different modes of cotton production. On the other hand, the sensitivity analysis revealed that organic cotton is financially more resilient to cotton price fluctuation and chemical inputs cost. Actually, organic cotton production seems to be a viable option to alleviate poverty in the present context of climate change.

1Programme Coton de l’Institut National de l’Environnement et des Recherches Agricoles (INERA)
2Institut de recherche en agriculture biologique, Frick, Switzerland

*Auteur correspondant: EMail: vognang@yahoo.fr
Reçu le 18.06.15 et accepté pour publication le 31.03.16
Introduction

L’agriculture constitue de loin le premier secteur d’activités en Afrique subsaharienne au regard de la part de la population active qu’elle occupe et de son importance dans les revenus des ménages et des pays. En effet, le secteur agricole emploie environ 60% de la population et contribue pour environ 30% au Produit Intérieur Brut (18). En Afrique de l’Ouest en particulier, le coton domine l’ensemble du système agraire compte tenu de son importance historique et économique et son rôle moteur sur les autres spéculations. Le coton constitue la principale source de revenus pour plus de deux millions de producteurs et contribue pour environ 25-45% des revenus d’exportation des pays producteurs (1, 21). Les infrastructures physiques et institutionnelles de la filière coton profitent aux autres spéculations, notamment les céréales (maïs, sorgho, mil) qui constituent la base de la sécurité alimentaire de la sous-région (22). Toutefois, la culture du coton reste sujette à de nombreux débats en termes d’impacts socioéconomiques et environnementaux. Aujourd’hui, on observe différents modes de production de coton dans la sous-région ouest africaine, notamment le mode conventionnel avec l’utilisation des produits chimiques de synthèse qui reste le système dominant; le mode transgénique (génétiquement modifié) qui a émergé au milieu des années 2000s dans quelques pays, en particulier le Burkina Faso; et le mode biologique qui a démarré certes il y a plus d’une décennie, mais reste limitée en terme de taille d’opération (moins d’1% du volume du conventionnel).

Compte tenu de l’impact négatif, de plus en plus reconnu, du coton conventionnel sur l’environnement et la santé (humaine et animale), les systèmes alternatifs (biologique et transgénique) sont perçus comme des options de durabilité surtout dans le contexte particulier de changement climatique. En effet, diverses études ont mis en évidence les effets négatifs de la production du coton conventionnel sur les ressources naturelles, la biodiversité, l’environnement, la santé humaine et animale (11, 25).

D’autres études ont aussi montré que la culture du coton conventionnel détériorerait les conditions socioéconomiques des producteurs (7) et aggraverait la pauvreté rurale même si les discours officiels suggèrent autrement. Ces études mettent en avant la baisse tendancielle des cours mondiaux du coton qui contraste avec la hausse des prix des intrants chimiques et le phénomène de subvention des agriculteurs dans les pays du Nord qui affecte la compétitivité des productions du Sud. Ainsi, les options alternatives sont de plus en plus privilégiées pour allier la trilogie économie-environnement-développement social. Toutefois, les contributions potentielles ou réelles de chacune de ces nouvelles options à inverser le manque ou l’absence de durabilité du système conventionnel restent peu éclarées.

Si la plupart des études s’accordent à reconnaître que le mode de production biologiques améliore dans la durée la fertilité du sol, la biodiversité et l’environnement (2, 9, 16, 19, 27), il y a encore assez de questionnement quant à sa rentabilité financière compte tenu des rendements relativement bas. En ce qui concerne le système transgénique, bon nombre d’auteurs et organisations soutiennent ses avantages notamment en matière d’économie en volume de pesticides chimiques de synthèse et donc de limitation de l’impact environnemental.

Les autres pays producteurs de coton (Bénin, Mali, Sénégal, Côte d’Ivoire) restent dans une position attentiste observant jusqu’où l’expérience burkinabé pourrait conduire. Au total, il y a peu d’évidences scientifiques sur les avantages réels des modes alternatifs qui sont censés inverser les effets négatifs de la production conventionnelle. Ainsi, producteurs et décideurs politiques restent perplexes quant à la meilleure option à promouvoir. Cette recherche vise à contribuer à clarifier cette question sous l’angle socioéconomique en comparant les performances financières et économiques du système coton (coton et cultures de rotation) selon les trois modes de production: conventionnel, biologique et transgénique. Les cultures de rotation du coton considérées incluent le maïs, le sorgho, le mil, le niébé et l’arachide. Notons que la décision et l’engagement à produire tel type de coton relèvent du choix des organisations de producteurs et des producteurs individuels même si la politique cotonnière actuelle semble mettre l’accent sur le coton transgénique qui occupe déjà plus de 50% des emblavures totales en coton.
L’étude fournira des éléments d’aide à la décision aux décideurs politiques, aux organisations de producteurs et aux agriculteurs individuels. Elle pourra aussi contribuer aux débats en cours sur les options de production adaptées à la sécurité alimentaire et l’éradication de la pauvreté dans un contexte de changement climatique.

Matériel et méthode

Choix de la zone d’étude et sélection des exploitations
Cette étude s’est déroulée dans deux zones où coexistent les trois modes de production, notamment la zone de Dano et la zone de Fada N’gourma. La zone de Dano est située dans la province du Ioba dans la région du Sud-Ouest (11°17’N 3°6’W) et celle de Fada dans la province du Gourma dans la région de l’Est (12°4’N 0°21’E). Elles se caractérisent par un climat du type soudanien caractérisé par une saison pluvieuse de Mai à Octobre et une saison sèche de Novembre à Avril et une hauteur de pluviométrie se situant entre 750 et 1100 mm par an. Le choix de ces zones se justifie par le fait que l’on retrouve les trois modes de coton cultivés au Burkina Faso à savoir le coton biologique, le coton conventionnel et le coton transgénique ou coton génétiquement modifiés (OGM). Dans chaque zone deux à trois villages ont été choisis de manière aléatoire pour constituer un échantillon de 180 exploitations dont 60 du système biologique, 60 du système conventionnel et 60 du système transgénique.

Le choix des producteurs pour chaque système a été fait de manière aléatoire. La carte 1 indique la localisation géographique des zones d’étude.

Collecte des données
La collecte des données a été réalisée durant deux campagnes: 2012-2013 et 2013-2014. Pour atteindre les objectifs de l’étude, c’est-à-dire l’analyse comparative des coûts de production et de la rentabilité des trois modes de production, nous avons procédé par l’élaboration de budget de culture. Différents types de budgets peuvent être distingués (17). Pour évaluer l’impact de l’adoption de pratiques agricoles durables, ce sont les budgets d’entreprise et les budgets partiels qui sont les méthodes les plus couramment utilisées (3). Dans le cadre de cette recherche, nous avons appliqué le budget partiel. Les budgets partiels incluent divers produits, mais s’en tiennent uniquement aux éléments de coût et bénéfice susceptibles de changement significatif à la suite de modification introduite dans les pratiques de production agricoles durables, ce sont les budgets d’entreprise et les budgets partiels qui sont les méthodes les plus couramment utilisées (3). Nous avons appliqué le budget partiel sur le coton et l’ensemble des cultures de rotation (sorgho, mil, maïs, niébé, arachide) pour les exploitants retenus (biologiques, conventionnels et transgéniques).

Carte 1: Localisation des zones d’étude.
Des fiches de suivi agro-économiques ont servi pour la collecte des données sur les superficies emblavées, les coûts variables (les intrants, les temps de travail et les coûts des opérations culturelles de la préparation du sol jusqu’à la récolte), les quantités d’outputs et les prix pour chacune des spéculations concernées dans les exploitations retenues. Ces fiches ont été administrées aux chefs des exploitations sélectionnées par des enquêteurs qui ont séjourné dans les villages pendant les deux campagnes durant les mois de juin à décembre. Le tableau 1 renseigne sur les prix des diverses spéculations suivant les trois modes de production. En dehors du coton dont le prix varie selon les modes de production, les prix des autres spéculations sont les mêmes pour tous les systèmes. En effet, à l’opposé du coton qui est intégré dans le marché international et vendu à différents prix (avec un prémium pour le biologique), les autres spéculations sont vendues sur les mêmes marchés locaux.

Analyse des données
Les données saisies et apurées ont été analysées pour donner des statistiques descrites sur les variables et indicateurs retenus. Le logiciel Excel a permis de générer les tableaux et graphiques et Xlstat version 2007 a permis de comparer statistiquement les moyennes entre les différents systèmes. Les coûts des intrants (semence, insecticide, NP, KB, urée, herbicide) ont été évalués en tenant compte des quantités réelles appliquées et de leurs prix de cession aux producteurs. Le coût de la main-d’œuvre tient compte de toutes les opérations culturelles (labour, semis, sarclage, épandage, traitement phytosanitaire, etc.) effectuées par la main-d’œuvre familiale et salariée. Le coût de la main-d’œuvre ainsi que les temps des travaux consacrés aux opérations culturelles proviennent des résultats d’enquête menées au niveau des exploitations. Les coûts variables représentent le coût des intrants et de la main d’œuvre salariée.

Les coûts totaux comprennent le coût total des intrants et le coût total de la main d’œuvre (familiale et salariée) et les coûts fixes (intérêts payés, amortissement ou frais de location de matériel, impôts et taxes payés, salaires versés, etc.) autres. Pour les besoins de cette étude, nous nous en tenons seulement aux coûts variables.

Les principaux paramètres de comparaison retenus sont les coûts variables de production et la marge brute. Par ailleurs, une analyse de la sensibilité de la marge brute par rapport aux variations du prix des intrants et du prix de vente du coton graine a été réalisée.

Les formules de calcul sont décrites ci-dessous:

- **Coûts variables** sont calculés par la formule I:
 \[CV = \sum CV_i \]
 avec \(CV_i \) la valeur en FCFA du coût variable \(i \) de production.

- **Évaluation de la marge brute** est calculée par la formule II:
 \[M = \text{Produit brut} - \text{Coûts variables} \]

Des tests de comparaison de moyenne sont effectués pour comparer les performances (coûts variables et marges brutes) des trois systèmes.

Les significativités ont été testées à partir de Xlstat 2007 en considérant la moyenne de Fisher au seuil de 5%. \(Pr \) c’est la probabilité. Si \(Pr \leq 5\% \), la différence entre les moyennes est dite significative «S». Mais si \(Pr > 5\% \) alors la différence entre les moyennes n’est pas significative «NS» «Non significative». Si \(Pr \leq 1\% \), la différence entre les moyennes est dite hautement significative «HS».

Les lettres a, b et c identifient le type de regroupement fait en fonction des écarts entre ces moyennes.

Enfin, une analyse de sensibilité a été faite pour ressortir l’influence des variations des prix des facteurs de production (notamment les intrants chimiques) et des prix de vente (du coton) respectivement sur les coûts de production et la rentabilité (marge brute) des trois systèmes de production. Le bien-fondé de cette analyse tient d’une part au fait que les intrants chimiques étant subventionnés, les prix pratiqués ainsi que les résultats financiers ne reflètent pas forcément les performances intrinsèques des modes de production bénéficiaires de ces distorsions.

Ainsi, pour mieux apprécier la vérité des performances intrinsèques des divers modes de production des scénarii de variation (augmentation) des prix des intrants chimiques de 20%, puis 30% ont été appliqués.

Tableau 1

<table>
<thead>
<tr>
<th>Spéculations</th>
<th>Bio</th>
<th>OGM</th>
<th>Conv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coton</td>
<td>350</td>
<td>245</td>
<td>245</td>
</tr>
<tr>
<td>Maïs</td>
<td>130</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>Sorgho</td>
<td>170</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>Mil</td>
<td>170</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>Nièbe</td>
<td>263</td>
<td>263</td>
<td>263</td>
</tr>
<tr>
<td>Arachide</td>
<td>175</td>
<td>175</td>
<td>175</td>
</tr>
</tbody>
</table>
A titre d’exemple, le taux de subvention pour les engrais au Burkina Faso varie entre 45 et 50% (28). En outre, compte tenu du caractère volatile et peu maîtrisé des prix des produits agricoles, notamment les prix du coton, déterminés par la loi de l’offre et de la demande sur le marché international, nous avons simulé des variations à la baisse du prix de vente du kg de coton dans l’ordre de 10%, 20%, 30% pour apprécier dans quelle mesure cela affecterait la rentabilité (marge brute) des trois modes de production;

Résultats

Principales caractéristiques des trois systèmes de production du coton

L’accès à la terre est une condition sine qua non de la production agricole et un déterminant important de l’adoption des technologies de maintien et de restauration de la fertilité du sol. De manière générale, les producteurs enquêtés sont de petits exploitants disposant moins de 10 hectares comme superficie disponible.

La superficie moyenne disponible est de 6,85 ha dans les exploitations biologiques contre 8,2 ha dans le système conventionnel et 7,2 ha dans le système transgénique. En ce qui concerne le mode d’accès à la terre, la grande majorité des producteurs enquêtés (92,86%) détiennent un droit de propriété sur leur terre. Le mode de faire-valoir dominant est l’héritage. Dans le système biologique, 96,66% des producteurs sont des propriétaires terriens contre 100% dans le système conventionnel et 88,8% dans le système transgénique.

L’âge moyen des producteurs enquêtés est respectivement de 36 ans, 41 ans et 33 ans dans les systèmes biologique, conventionnel et transgénique.

La taille moyenne des ménages agricoles est respectivement de 10 membres, 8 membres et 9 membres dans les systèmes biologique, conventionnel et transgénique.

Le nombre moyen d’actifs agricoles est de 5 personnes dans les systèmes biologique et conventionnel et 4 dans le système transgénique avec une différence significative au seuil de 5% (test de Fisher).

En termes d’occupation du sol, dans le système biologique, le mil représente environ 21% de la superficie totale, suivi du maïs 20%, du coton bio 17,5% et enfin du sorgho 15,7%. Dans le système conventionnel le coton occupe 19% de la superficie et vient en seconde position après le sorgho (21%). Le mil et le maïs viennent successivement en 3ème et 4ème position en occupant 17% et 14% de la superficie totale de l’exploitation. Dans le système transgénique, le coton et le sorgho sont les cultures les plus dominantes car elles occupent chacune 24% de la superficie totale. Elles sont suivies par le sésame (16,3%) et le maïs (15,4%).

S’agissant des intrants, les systèmes conventionnel et transgénique dépendent des sociétés cotonières qui leur distribuent sous forme de crédit (crédit intrants) par le biais des organisations de producteurs les semences et les produits chimiques de synthèse (pesticides chimiques, engrais minéraux et herbicides) nécessaires.

Par contre, dans le système biologique les producteurs mobilisent ou fabriquent localement la grande partie des intrants notamment la fumure organique (bouse de vache, compost) et les ingrédients nécessaires pour la préparation des biopesticides (graines de neem, piment, etc.).

Notons aussi que par l’intermédiaire de l’UNPCB (Union Nationale des Producteurs de Coton du Burkina Faso) les producteurs biologiques ont aussi accès au batik (pesticide autorisé dans l’agriculture biologique) pour la protection phytosanitaire du cotonnier, et aux semences de coton.

En effet, l’UNPCB reçoit de l’INERA (Institut National de l’Environnement et des Recherches Agricoles) des semences de pré-base conventionnelles qu’il multiplie dans un dispositif séparé du conventionnel pour les producteurs du coton biologique. Toutefois, le risque de contamination avec les semences transgéniques s’accroît de plus en plus et exige un dispositif strict de contrôle et de surveillance dans toute la chaîne de production semencière.

Enfin, il faut mentionner que dans le système biologique toutes les spéculations qui rentrent en rotation avec le coton sont aussi produites suivant les normes de l’agriculture biologique même si la certification porte uniquement sur le coton.

Le coton biologique (fibre) est exporté alors que les autres spéculations biologiques sont vendues sur le marché local.

L’organisme de certification du coton biologique au Burkina Faso est EcoCert International, une société agréée par l’Union Européenne.

La décision de s’engager dans un système particulier de production relève essentiellement du choix des organisations de producteurs et des producteurs individuels. Pour le cas particulier du système biologique, la présence dans la zone de production d’une organisation de promotion pouvant offrir l’encadrement technique et organisationnel est indispensable. Depuis 2004, Helvetas (Swiss Intercooperation)-Burkina constitue la principale organisation promotrice de coton biologique au Burkina Faso.
Comparaison des rendements

Parmi les trois systèmes en comparaison, le système transgénique enregistre le meilleur rendement de coton graine avec une différence de 128% par rapport au système biologique et de 15% par rapport au système conventionnel. L’analyse statistique montre qu’il existe une différence significative entre le système biologique et les deux autres systèmes. Par contre, la différence de rendement entre le coton conventionnel et le coton transgénique n’est pas significative au seuil de 5% selon le test de Fischer. Au niveau du maïs, le système biologique obtient également le plus faible rendement avec une baisse de 16% et de 9% respectivement par rapport aux systèmes transgénique et conventionnel. Par rapport au système conventionnel, le rendement du maïs est amélioré de 8% dans le système transgénique. Il n’y a pas de différence significative entre les rendements de maïs dans les trois systèmes. Avec le sorgho, les systèmes biologique et conventionnel obtiennent des rendements comparables, soit 691 kg/ha et 690 kg/ha respectivement contre un rendement de 1.143 kg/ha pour le système transgénique. La différence de rendement du sorgho entre le système transgénique et les systèmes biologique et conventionnel est hautement significative (Test de Fisher, \(P_r=0,0001 \)). Au niveau du mil, c’est le système biologique qui enregistre le meilleur rendement (646 kg/ha), suivi du système transgénique (630 kg/ha), puis le système conventionnel (614 kg/ha). Il n’y a toutefois pas de différence significative entre ces rendements au seuil de 5% (Test de Fischer, \(P_r=0,53 \)).

De même, il n’y a pas de différence significative entre les différents systèmes pour les rendements du niébé et d’arachide. Les rendements du niébé et d’arachide sont respectivement de 619 et 572 kg/ha pour le système biologique, 756 et 637 kg/ha pour le système conventionnel et 730 et 675 kg/ha pour le système transgénique (Tableau 2).

Comparaison des temps de travail

La production du coton biologique nécessite 601 heures de travail par hectare contre 381 heures pour le coton transgénique et 517 heures pour le coton conventionnel. Le coton transgénique permet de réduire le temps de travail de 70% et 43% respectivement par rapport au coton biologique et conventionnel.

La culture du maïs dans le système biologique nécessite 445 heures de travail; ce temps de travail est 77% plus élevé par rapport aux deux autres systèmes où ce temps est de 251 et 248 heures respectivement pour le système conventionnel et le système transgénique. Le sorgho et le mil nécessitent respectivement 384 et 393 heures dans le bio contre respectivement 449 et 483 heures dans le système transgénique et 302 et 289 heures dans le conventionnel.

Les temps de travail pour la production du niébé et d’arachide sont respectivement de 184 et 195 heures dans le système biologique, 175 et 153 heures dans le système conventionnel et 135 et 128 heures dans le système transgénique (Tableau 3).

Comparaison des coûts de production

Les tableaux 4 et 5 indiquent respectivement les coûts des intrants et les coûts variables totaux des diverses spéculations sous les 3 modes de production.

Il ressort que d’une manière générale, les coûts de production des diverses spéculations en modes de production transgénique et conventionnel sont plus élevés que ceux du mode biologique. Les coûts de production du coton transgénique et du coton conventionnel sont respectivement supérieurs à celui du coton biologique de 72% et 64%. Les différences se situent essentiellement dans les dépenses liées aux intrants.

En effet, les coûts d’opération sont respectivement de 69.115 CFA, 43.815 CFA et 59.455 CFA/ha pour le coton biologique, transgénique ou conventionnel. Par contre en ce qui concerne les intrants, la production du coton transgénique et du coton conventionnel dépend des produits chimiques, notamment les engrais minéraux, les pesticides chimiques de synthèse et les herbicides dont les coûts à l’hectare s’élèvent à 87.363 CFA et 77.800 CFA respectivement pour le coton transgénique et le coton conventionnel. A l’inverse la production du coton biologique dépend de la fumure organique et des ingrédients pour la fabrication de biopesticides. Ces ressources locales sont mobilisées localement à moindre coût. Les mêmes tendances de différences de coûts entre les trois modes de production sont observées en ce qui concerne le maïs et le sorgho qui bénéficient aussi de l’application d’herbicides et d’engrais minéraux dans les systèmes de production transgénique et conventionnel. En ce qui concerne le mil et le niébé, il n’y a pas de différences significatives en ce qui concerne les coûts de production en partant d’un système de production à l’autre. Ce qui pourrait se justifier par la non application d’intrants spécifiques sur ces spéculations quelque que soit le mode production.

Comparaison des temps de travail

La production du coton biologique nécessite 601 heures de travail (100 hommes-jours) par hectare contre 381 heures (63 hommes-jours) pour le coton transgénique et 517 heures (87 hommes-jours) pour le coton conventionnel. Le coton transgénique permet de réduire le temps de travail de 70% et 43% respectivement par rapport au coton biologique et conventionnel.
Tableau 2
Rendement moyen (kg/ha) des diverses spéculations sous les 3 systèmes au cours des campagnes 2012-2013 et 2013-2014.

<table>
<thead>
<tr>
<th>Spéculations</th>
<th>Bio</th>
<th>OGM</th>
<th>Conv</th>
<th>Pr</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colòn</td>
<td>478c</td>
<td>1092a</td>
<td>949b</td>
<td>0,0001</td>
<td>HS</td>
</tr>
<tr>
<td>Maïs</td>
<td>777a</td>
<td>920a</td>
<td>850a</td>
<td>0,071</td>
<td>NS</td>
</tr>
<tr>
<td>Sorgho</td>
<td>691b</td>
<td>1143a</td>
<td>690b</td>
<td>0,0245</td>
<td>S</td>
</tr>
<tr>
<td>Mï</td>
<td>646a</td>
<td>630a</td>
<td>614a</td>
<td>0,53</td>
<td>NS</td>
</tr>
<tr>
<td>Nibê</td>
<td>619a</td>
<td>730a</td>
<td>756a</td>
<td>0,4521</td>
<td>NS</td>
</tr>
<tr>
<td>Arachide</td>
<td>572a</td>
<td>675a</td>
<td>637a</td>
<td>0,65</td>
<td>NS</td>
</tr>
</tbody>
</table>

Tableau 3

<table>
<thead>
<tr>
<th>Opérations culturales</th>
<th>Coton</th>
<th>Maïs</th>
<th>Sorgho</th>
<th>Mï</th>
<th>Nibê</th>
<th>Arachide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bio</td>
<td>OGM</td>
<td>Conv</td>
<td>Bio</td>
<td>OGM</td>
<td>Conv</td>
</tr>
<tr>
<td>Préparation du sol</td>
<td>71</td>
<td>51</td>
<td>61</td>
<td>100</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>labour</td>
<td>53</td>
<td>49</td>
<td>50</td>
<td>36</td>
<td>22</td>
<td>35</td>
</tr>
<tr>
<td>semis</td>
<td>56</td>
<td>52</td>
<td>52</td>
<td>26</td>
<td>11</td>
<td>43</td>
</tr>
<tr>
<td>démarriage</td>
<td>102</td>
<td>49</td>
<td>103</td>
<td>112</td>
<td>90</td>
<td>53</td>
</tr>
<tr>
<td>sarclage</td>
<td>43</td>
<td>42</td>
<td>37</td>
<td>25</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>butillage</td>
<td>34</td>
<td>7</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Traitement phyto.</td>
<td>120</td>
<td>26</td>
<td>34</td>
<td>48</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Eparage herbicide</td>
<td>122</td>
<td>100</td>
<td>147</td>
<td>98</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>Désorption</td>
<td>601</td>
<td>381</td>
<td>517</td>
<td>445</td>
<td>251</td>
<td>248</td>
</tr>
<tr>
<td>Récolte</td>
<td>100</td>
<td>64</td>
<td>86</td>
<td>74</td>
<td>42</td>
<td>41</td>
</tr>
</tbody>
</table>

Tableau 4
Coût des intrants (fcfa/ha).

<table>
<thead>
<tr>
<th>Opérations culturales</th>
<th>Coton</th>
<th>Maïs</th>
<th>Sorgho</th>
<th>Mï</th>
<th>Nibê</th>
<th>Arachide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bio</td>
<td>OGM</td>
<td>Conv</td>
<td>Bio</td>
<td>OGM</td>
<td>Conv</td>
</tr>
<tr>
<td>Colòn</td>
<td>29616c</td>
<td>104242a</td>
<td>81700b</td>
<td>0,0001</td>
<td>HS</td>
<td></td>
</tr>
<tr>
<td>Maïs</td>
<td>11723c</td>
<td>45341b</td>
<td>54905a</td>
<td>0,0001</td>
<td>HS</td>
<td></td>
</tr>
<tr>
<td>Sorgho</td>
<td>5006c</td>
<td>28233a</td>
<td>9349b</td>
<td>0,0001</td>
<td>HS</td>
<td></td>
</tr>
<tr>
<td>Mï</td>
<td>3943b</td>
<td>3359b</td>
<td>9583a</td>
<td>0,0001</td>
<td>HS</td>
<td></td>
</tr>
<tr>
<td>Nibê</td>
<td>4071c</td>
<td>14798b</td>
<td>42037a</td>
<td>0,0001</td>
<td>HS</td>
<td></td>
</tr>
<tr>
<td>Arachide</td>
<td>5641c</td>
<td>19488a</td>
<td>7958b</td>
<td>0,0001</td>
<td>HS</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 5
Coûts variables (fcfa/ha) totaux campagnes 2012-2013 et 2013-2014.

<table>
<thead>
<tr>
<th>Opérations culturales</th>
<th>Coton</th>
<th>Maïs</th>
<th>Sorgho</th>
<th>Mï</th>
<th>Nibê</th>
<th>Arachide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bio</td>
<td>OGM</td>
<td>Conv</td>
<td>Bio</td>
<td>OGM</td>
<td>Conv</td>
</tr>
<tr>
<td>Colòn</td>
<td>76938c</td>
<td>143945a</td>
<td>122125b</td>
<td>0,0001</td>
<td>HS</td>
<td></td>
</tr>
<tr>
<td>Maïs</td>
<td>38566c</td>
<td>60237b</td>
<td>76489a</td>
<td>0,0001</td>
<td>HS</td>
<td></td>
</tr>
<tr>
<td>Sorgho</td>
<td>25210b</td>
<td>47063a</td>
<td>32772a</td>
<td>0,0001</td>
<td>HS</td>
<td></td>
</tr>
<tr>
<td>Mï</td>
<td>27967b</td>
<td>20910b</td>
<td>33223a</td>
<td>0,005</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Nibê</td>
<td>17672c</td>
<td>24053b</td>
<td>53295a</td>
<td>0,0001</td>
<td>HS</td>
<td></td>
</tr>
<tr>
<td>Arachide</td>
<td>23721a</td>
<td>27979a</td>
<td>20110a</td>
<td>0,55</td>
<td>NS</td>
<td></td>
</tr>
</tbody>
</table>
La culture du maïs dans le système biologique nécessite 445 heures de travail soit 74 hommes-jours; ce temps de travail est 77% plus élevé par rapport aux deux autres systèmes où ce temps est de 251 et 248 heures respectivement pour le système conventionnel et le système transgénique. Le sorgho et le mil nécessitent respectivement 384 et 393 heures dans le bio contre respectivement 449 et 483 hommes-jours dans le système transgénique et 302 et 289 hommes-jours dans le conventionnel. Les temps de travail dans le niébé et l’arachide sont presqu’identiques dans les trois systèmes avec 29 et 30 hommes-jours dans le système biologique, 27 hommes-jours dans le système OGM et 26 et 29 hommes jours dans le système conventionnel.

La marge brute des différentes cultures dans les trois systèmes

En culture cotonnière, le système transgénique génère la meilleure marge brute avec 120,482 F/ha contre 110,265 et 90,060 F/ha respectivement pour le système conventionnel et biologique. Toutefois, ces valeurs ne présentent pas de différence significative au seuil de 5%. Avec le maïs, la meilleure marge est obtenue par le système biologique avec 62,444 F/ha soit un gain de 5% par rapport au système transgénique et de 84% par rapport au système conventionnel dont la marge brute diffère significativement des autres systèmes. La meilleure marge brute en sorgho est obtenue par le système transgénique avec des différences significatives par rapport aux deux autres systèmes. En ce qui concerne les autres spéculations (mil, niébé et arachide) il n’y a pas une différence significative au seuil de 5% entre les marges brutes générées par les trois systèmes (biologique, conventionnel et transgénique).

Analyse de sensibilité de la marge brute des différents modes de production du coton

Les marges étant fonction des prix des facteurs de production et du prix de vente, des changements au niveau de ces variables affecteront inégalement la rentabilité des divers systèmes de production. Pour ressortir et analyser les effets des changements éventuels des prix des facteurs de production et du prix de vente, nous avons fait des simulations sur la base de deux scénarios.

Pour des raisons pratiques et de simplicité nous nous sommes limités sur la production du coton. Ainsi, dans un premier scenario nous avons augmenté de 20% et de 30% les prix des intrants chimiques de synthèse (engrais minéraux, pesticides chimiques et herbicides) afin de mesurer leurs effets sur la marge brute (Tableau 6).

Les coûts des intrants chimiques de synthèse sont les plus sujets aux conditions et changements du marché international. Dans un deuxième scénario nous avons baissé de 20% et de 30% les prix d’achat au producteur du coton graine. Ces différentes simulations nous permettent d’apprécier la résilience financière des divers systèmes de production par rapport aux chocs du marché international. Les figures 1 et 2 présentent les résultats des diverses simulations sur les marges brutes des trois modes de production du coton.

Sensibilité de la marge brute à l’augmentation des prix des intrants chimiques

La variation de la marge brute avec l’augmentation du prix des intrants chimiques est présentée dans la figure 1. Avec un accroissement de 20% du prix des intrants chimiques, la marge brute du coton biologique est presque égale à celle du coton conventionnel. Cependant, la marge brute du coton transgénique reste plus élevée par rapport à celle des deux autres systèmes. A 30% d’augmentation du prix des intrants, la marge brute du coton biologique dépasse de 4,5% celle du coton conventionnel, mais reste inférieure à celle du coton transgénique. La figure 2 présente la variation de la marge brute des différentes formes de coton avec la baisse du prix de vente du coton-graine de 10%, 20% et 30%. Il ressort de l’analyse de ce graphe, qu’avec 10% de baisse du prix de vente du coton graine, le coton biologique présente une marge brute de 73,359 CFA/ha qui rese inférieure de 22% et de 16% à celles du coton transgénique et du conventionnel. Avec une baisse du prix de vente de 20%, le coton biologique enregistre une marge brute de 56,660 CFA/ha. Cette marge est respectivement inférieure de 15,21% et 11,17% à la marge brute du coton génétiquement modifié et du coton conventionnel. Enfin avec une baisse de 30% du prix de vente le bio dégage une marge de 39,960 CFA/ha. Cette marge est proche de celle du coton transgénique et du coton conventionnel.

Ainsi, la différence de marge entre le coton biologique et les deux autres formes de coton diminue lorsque le prix de vente des cotons graine baisse. Une baisse du prix de vente au coton graine de plus de 30% rendrait le coton biologique plus rentable que les autres types de coton.
Tableau 6
Marge brute moyenne des différentes cultures des trois systèmes (fCfa/ha) sur les deux campagnes.

<table>
<thead>
<tr>
<th></th>
<th>Bio</th>
<th>OGM</th>
<th>Conv</th>
<th>Pr</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>coton</td>
<td>90060a</td>
<td>120482a</td>
<td>110265a</td>
<td>0,1035</td>
<td>NS</td>
</tr>
<tr>
<td>maïs</td>
<td>62444a</td>
<td>59365a</td>
<td>34011a</td>
<td>0,0811</td>
<td>NS</td>
</tr>
<tr>
<td>sorgho</td>
<td>92260a</td>
<td>147247a</td>
<td>84528a</td>
<td>0,0601</td>
<td>NS</td>
</tr>
<tr>
<td>mil</td>
<td>81853a</td>
<td>86190a</td>
<td>71157a</td>
<td>0,15</td>
<td>NS</td>
</tr>
<tr>
<td>niaobe</td>
<td>145125a</td>
<td>167937a</td>
<td>145533a</td>
<td>0,0633</td>
<td>NS</td>
</tr>
<tr>
<td>arachide</td>
<td>76379a</td>
<td>90149a</td>
<td>91365a</td>
<td>0,068</td>
<td>NS</td>
</tr>
</tbody>
</table>

Figure 1: Variation de la marge avec l’augmentation du prix des intrants chimiques.

Figure 2: Variation de la marge en fCfa/ha avec la baisse du prix d’achat de coton graine.
Discussions
Le coton étant au centre des systèmes de culture considérés, nous focalisons les discussions autour des performances de la production du coton selon les trois modes de production pour des raisons de simplification. Toutefois, dès que nécessaire, nous ferons mention des cultures de rotation intégrées dans les systèmes. Ainsi, nous discutons les résultats suivant trois angles: la comparaison des coûts de production du coton selon les modes de production, la comparaison des marges brutes dégagées par la production du coton selon les différents modes de production, et l’analyse de sensiblité des différents systèmes de culture du coton.

Comparaison des coûts de production du coton dans les différents systèmes de production
Les coûts de production des systèmes de production du coton conventionnel et transgénique sont significativement supérieurs à ceux du système biologique. L’analyse de la structure des coûts montre que les intrants chimiques (engrais minéraux, pesticides) constituent les principaux postes de dépense qui différencient les systèmes de production conventionnel et transgénique du système biologique. Les deux premiers dépendent fortement des intrants chimiques alors que le système biologique dépend plutôt des ingrédients et ressources naturels (fumure organique, plantes à effet insectifuge ou insecticide) mobilisés localement à moindres coûts. Ces résultats sont conformes à ceux des études similaires (6, 20, 23) qui ont analysé la rentabilité des différents systèmes culturaux de coton au Bénin et ailleurs (Inde). D’autres études sur différentes spéculations et dans d’autres régions du monde ont aussi établi que les coûts de production des systèmes de production biologiques sont inférieurs à ceux des systèmes conventionnels du fait que le mode de production biologique fait peu recours aux intrants extérieurs. Ainsi, la production du coton biologique n’est pas assujettie aux barrières financières qu’impose la production du coton conventionnel et transgénique et pourrait être considérée comme une option pertinente pour les couches défavorisées notamment les petits producteurs et les femmes.

Comparaison des marges du coton des différents systèmes de production
Les résultats de l’étude ont montré qu’il n’y a pas de différence significative entre les marges brutes générées par les différents systèmes culturaux de coton. Les différences de coûts de production sont largement compensées par les différences de rendement des différents systèmes. S’agissant des cultures de rotation, les résultats en ce qui concerne les marges brutes restent aussi mitigés. Pour certaines spéculations le système biologique s’est montré plus rentable (cas du mais).

Pour d’autres, c’est le système transgénique qui est plus rentable (cas du sorgho et du niébé). Et pour d’autres encore, c’est le système conventionnel qui est plus rentable même si la différence n’est pas significative (cas de l’arachide). D’une manière générale, ces résultats sont en phase avec les tendances générales qui se dégagent des études sur la comparaison de la rentabilité des systèmes de production biologique, conventionnelle et transgénique.

En faisant le point des recherches sur les systèmes biologiques/alternatifs et conventionnels entre 1975 et 1989 des auteurs (9) ont relevé qu’il n’y a pas une tendance générale en ce qui concerne la rentabilité relative des systèmes de production alternatifs ou biologiques comparativement aux systèmes conventionnels. Dans certains cas les systèmes biologiques sont plus rentables que les systèmes conventionnels lorsque le prémium du bio est pris en compte et l’inverse dans le cas contraire (3, 5). En comparant les systèmes biologiques, intégrés et conventionnels dans différents agroécosystèmes en Italie, il a été démontré que les systèmes biologiques présentent les marges brutes les plus élevées par rapport aux deux autres systèmes (24). De même l’étude sur la viabilité des systèmes cotonniers en Inde a prouvé que le coton biologique offre en moyenne une marge brute meilleure à celle du coton conventionnel (6). Par contre l’étude sur les systèmes biologiques, intégrés et conventionnels avec au centre la tomate, le maïs doux et les citrouilles a révélé que les systèmes biologiques sont moins performants en terme de marge brute comparativement aux intégrés et conventionnels (3). D’autres auteurs ont montré qu’en fait la rentabilité relative des systèmes de production biologique dépend des spéculations et des agroécosystèmes (4).

En analysant la rentabilité de cinq systèmes cotonniers au Bénin des auteurs ont trouvé que les systèmes conventionnels et biologiques sont rentables mais avec une marge brute plus élevée pour le conventionnel (20).
En 2007, une autre étude conduite au Bénin sur la base de différents scénarios de rendements a montré que dans le scénario optimiste (rendement maximal) le coton biologique présente des avantages financiers meilleurs au conventionnel (23). Ce qui n’est pas le cas dans le scénario pessimiste de bas rendement. Les études menées au Burkina-Faso en 2008 et 2010 présentent des résultats relativement meilleurs pour le coton biologique mais avec toutefois des différences de prix de vente du coton allant du simple au double en faveur du bio (12, 13).

Analyse de sensibilité
La simulation de l’effet des chocs du marché international (hausse des prix des intrants chimiques ou baisse des prix de vente du coton) sur la rentabilité des différents systèmes culturaux du coton donne des résultats plus satisfaisants au coton biologique qui est très peu dépendant du marché international en ce qui concerne l’accès aux intrants de base. Mieux, il s’est avéré que les scénarios de baisse du prix de vente du coton graine impactent relativement moins la rentabilité financière du coton biologique comparativement aux autres systèmes culturaux de coton. Cela confère une certaine résilience financière au système culturel coton biologique. Ce résultat est quelque peu différent de celui de l’étude réalisée en 2000 sur l’effet de la hausse des prix des intrants sur les systèmes maraîchers biologique, conventionnel et intégré (3). Les résultats obtenus étaient en faveur du système intégré qui a maintenu une meilleure performance financière comparativement aux systèmes biologique et conventionnel.

Une question importante que suggèrent ces résultats, c’est de savoir pourquoi l’adoption de l’agriculture biologique reste si faible (moins d’1% des superficies agricoles cultivées) malgré l’absence de barrières financières (faible coût des intrants) et une rentabilité comparable aux autres systèmes (conventionnel et transgénique) sans compter ses avantages (supposés ou vrais) sur les plans environnemental et sanitaire. Pour bien appréhender la réponse à cette question, plusieurs pistes et hypothèses peuvent être explorées. La première piste concerne la charge de travail.

Comme en témoignent les résultats du tableau 3, le système biologique consomme largement plus de temps de travail que les systèmes conventionnel et transgénique. En effet, l’application des technologies biologiques en lieu et place des produits chimiques de synthèse prêts à l’emploi (ready made) nécessite relativement plus de temps pour la mobilisation des matières premières, la préparation et l’application de ces technologies.

La plupart de ces technologies (biologiques) n’ayant pas la même rapidité de réponse que les produits chimiques de synthèse, il est parfois nécessaire de procéder à des applications plus répétées que dans le cas des technologies conventionnelles basées sur l’utilisation de produits chimiques de synthèse. C’est le cas notamment du désherbage et des traitements phytosanitaires qui demandent souvent des répétitions plus élevées dans le système bio que dans les autres systèmes. Vu sous cet angle, le développement de l’agriculture biologique devra passer par la recherche et l’amélioration de l’efficacité technique des technologies proposées afin de faire économiser plus de temps et soulager les exploitants.

La deuxième piste concerne le besoin d’encadrement rapproché. La production biologique exige un mécanisme intensif de connaissance (knowledge intensive) et un raisonnement de chaque opération/intervention de l’exploitant et non des applications calendaires comme dans les systèmes conventionnel et transgénique. Pour ce faire, les exploitants biologiques ont besoin d’un encadrement plus rapproché mais qui fait souvent défaut.

Conclusion
Cette étude a mis en lumière la rentabilité financière des trois systèmes de production du coton (biologique, génétiquement modifié et conventionnel) en Afrique de l’Ouest et ce, dans le contexte particulier du Burkina Faso. Il ressort que quel que soit le mode de production, la culture du coton est financièrement rentable. Cela confirme l’importance de cette culture dans la vie de millions de producteurs tant au Burkina Faso que dans la sous-région ouest Africaine. Malgré la différence notable de rendement entre les systèmes transgénique et conventionnel et le système biologique, il n’y a pas de différence significative entre les marges dégagées par ces différents modes de production de coton. En effet, la faiblesse relative du rendement du système biologique est compensée par les coûts de production relativement faibles et le prix de vente plus rémunérateur. Toutefois avec l’analyse de sensibilité, il apparaît d’une part que l’augmentation des prix des intrants chimiques de synthèse réduit l’écart de la marge Brute entre les trois types de coton au point que le coton biologique apparaît plus rentable avec l’augmentation de plus de 30% du prix des intrants chimiques.

La même tendance s’observe dans le cas d’une baisse des prix de vente du coton graine de 10%, 20% et 30%. Somme toute, si la production du coton reste une activité majeure de génération de revenu pour une grande frange des producteurs du Burkina et de la sous-région ouest africaine, la production du coton biologique se présente comme la plus résiliente sur le plan financier. Le coton biologique se comporte relativement bien sur le plan financier face aux chocs externes, en l’occurrence les fluctuations du marché international du coton et des intrants chimiques.
En tant que telle, la production du coton biologique se présente comme une option prometteuse sur le plan socioéconomique et devrait être considérée comme une opportunité dans la lutte pour l’éradication de la pauvreté dans le contexte particulier de changement climatique. Toutefois, pour améliorer les performances du système biologique et faciliter sa diffusion à plus grande échelle, il faudra d’une part investir davantage dans la recherche et l’amélioration de l’efficacité technique des technologies proposées et d’autre part renforcer les capacités des services de vulgarisation et de conseils agricoles en techniques de production biologique pour mieux accompagner les exploitants biologiques.

Remerciements

Références bibliographiques

22. Nelen J., Meenink H. & Traoré N., 2012, From handling cotton to dealing with prices and services: empowering farmers’ organisations in the West African cotton sub-sectors. Seas of Change, SNV.

L.C. Glin, Béninoise, PhD, Chercheur, Institut de recherche en agriculture biologique, Bamako, Mali

I. Bamba, Burkina Faso, MSc, Assistant de recherche, Institut National de l’Environnement et des Recherches Agricoles, Programme Coton, Ouagadougou, Burkina Faso.

B.M. Ouattara, Burkina Faso, MSc, Assistant de recherche, Institut National de l’Environnement et des Recherches Agricoles, Programme Coton, Ouagadougou, Burkina Faso.