ARTICLES ORIGINAUX
ORIGINAL ARTICLES

OORSPROKELIJKE ARTIKELS

ARTICULOS ORIGINALES

Contraintes socio-économiques de répartition des terres et impacts sur la conservation des sols dans les hauts plateaux de l'Ouest du Cameroun

H.G. Djoukeng ${ }^{1}$, T. Dogot², C.M. Tankou ${ }^{3}$ \& A. Degré ${ }^{1 *}$

Keywords: Soil conservation- Fongo-Tongo- Land tenure- Heirs- Cameroon

Résumé

Cet article combine les données d'enquêtes sociales sur l'accès à la propriété foncière et celles de l'adoption du billonnage cloisonné comme technique de conservation des sols pour permettre de mieux comprendre la gestion de l'érosion et du ruissellement par les agriculteurs dans les Hauts Plateaux de l'Ouest-Cameroun, spécifiquement dans les collines du groupement Fongo-Tongo. L'étude a porté sur 230 parcelles appartenant à 157 répondants parmi les 168 personnes recensées. Cinq principaux modes d'accès à la terre ont été répertoriés: l'héritage, l'achat, la cession temporaire, les dons et la location. Les propriétaires et les exploitants des collines de faibles pentes (entre 11% et 17%) et de fortes pentes (entre 22\% et 29%) ont été inventoriés. Deux principaux rangs sociaux ont été identifiés: les dignitaires (Chefs, Notables, Elites et Héritiers) et les autres (Fils nonhéritiers et Femmes). L'étude a montré que les aptitudes agronomiques des parcelles telles que reconnues par les agriculteurs sont un facteur déterminant dans la mise en œuvre des techniques de conservation des sols. L'approche paysanne de la fertilité des sols a ensuite été scientifiquement prouvée par des analyses physico-chimiques des échantillons de sol prélevés sous les espèces végétales indicatrices (Pennisetum spp sur les sols dits «fertiles» et Imperata cylindrica et Melinis minutiflora sur les sols dits «pauvres»). L'étude a montré que l'accès à la terre, l'adoption du billonnage cloisonné et l'exploitation des pentes sont significativement influencés par la situation socio-économique des agriculteurs ($p<0,05$).

Summary

Socio-economic Constraints of Land
Distribution and Impacts on Soil
Conservation in the Western Highlands of
Cameroon
This article combines the data of a social survey on access to land and those regarding the adoption of tied ridging as soil conservation technique to help better understanding the management of erosion and runoff by farmers in the Western Highlands of Cameroon, specifically in the hills of Fongo-Tongo villages' group. The study focused on 230 plots owned by 157 respondents among 158 people inventoried. Five main modes of access to land were listed as: inheritance, purchase, temporary transfers, donations and rental. The owners and operators of the hills with gentle slopes (between 11% and 17\%) and of steep slopes (between 22\% and 29\%) were inventoried. Two main social ranks were identified: the dignitaries (Chiefs, Notables, Elites, and Heirs) and other (Non-heirs son, and Women). The study showed that the agronomic abilities of plots as recognized by farmers are a key factor in the implementation of soil conservation techniques. The peasant approach of soil fertility has been scientifically proven by physicochemical analysis of soil samples taken under indicator plant species (Pennisetum spp on fertile soils, and Imperata cylindrica and Melinis minutiflora on poor soils). The study showed that access to land, adoption of tied ridging, and cultivation on the slopes were significantly influenced by socioeconomic status of farmers ($p<0.05$).

[^0]
Introduction

Dans les tropiques en général, la pression démographique est un facteur de l'émigration (1). La pression démographique entraine l'exploitation intensive des parcelles dans tous les types de terroirs, exposant celles situées dans les pentes aux phénomènes d'érosion par ruissellement si des mesures de conservation des sols ne sont pas prises. Deux systèmes fonciers interagissent au Cameroun: le système traditionnel et le système moderne. Le système traditionnel fait référence au droit foncier coutumier qui renvoie aux règles et aux procédures communautaires orales qui régissent les relations foncières entre les individus d'une même communauté ou entre deux communautés rurales voisines (12). Le système moderne est régi par divers textes législatifs et réglementaires en l'occurrence les lois, les décrets, les arrêtés, les circulaires et autres instructions du gouvernement (8).

Dans la zone agro-écologique des Hauts Plateaux de I'Ouest comme dans le Nord Cameroun où le système social est centralisé, la gestion des terres et des ressources naturelles revient aux chefs ou aux notables ($9,12,13$). On entend par système social centralisé un système au sein duquel les décisions prises unilatéralement par les chefs de famille ou les chefs coutumiers ne sont pas contestées. A la mort du chef de famille ou du chef coutumier, la totalité du son patrimoine passe aux mains de l'unique héritier de sexe masculin. Les fils non-héritiers ont droit uniquement aux petites parcelles pour construire leur case. Pour avoir la possibilité d'exploiter des terres agricoles, ils doivent: les prendre en location, les acheter ou demander des parcelles sur les réserves foncières de la chefferie. Les réserves foncières de la chefferie comprennent l'ensemble des terres non encore attribuées. En attendant d'accueillir de nouveaux solliciteurs de parcelles, ces réserves peuvent être temporairement exploitées par toute personne qui en fait la demande à la chefferie. Les milieux ruraux camerounais sont subdivisés en groupements, villages et quartiers. Un groupement est un ensemble de plusieurs villages qui sont à leur tour constitués de quartiers.

Dans la zone agro-écologique des Hauts Plateaux de I'Ouest-Cameroun, les chefs de groupement sont assistés dans leurs fonctions par le «conseil des 9 notables». Ce conseil est constitué par les descendants des compagnons du fondateur du groupement et qui restent, générations après générations, titulaires de cette charge. Les premiers «notables des 9» avaient reçu en apanage de vastes domaines; ce qui fait d'eux les plus grands propriétaires terriens des chefferies dans les Hauts Plateaux de I'Ouest-Cameroun. Ils ont placé progressivement leurs propres fils et d'autres notables sur ces terres (9). Le chef du groupement est garant de toutes les terres. Il gère le patrimoine foncier de son groupement et délègue certaines de ses fonctions aux chefs de villages et de quartiers (7). Les chefs de villages sont pour la plupart des descendants du fondateur du groupement et des anciens chefs guerriers.

Depuis les années 1990, certaines élites urbaines accèdent à la prestigieuse fonction de notable ou de chef de village. D'après Ndjogui \& Levang (12), la dénomination d'élites urbaines fait référence à des hommes ou femmes d'affaires, des cadres supérieurs des secteurs public et privé résidant en ville ou à l'étranger et possédant des revenus réguliers et élevés, ainsi qu'une grande influence politique, économique et sociale. L'habitat se voulant groupé dans la zone, il n'y a presque plus d'espace libre dans les plaines, les collines à faibles pentes et les plateaux pour y faire de l'agriculture, et s'il y en a, cet espace est réservé pour une certaine classe de la société. C'est pourquoi, la quasi-totalité des agriculteurs se replie vers les collines de fortes pentes où les négociations d'acquisition des terres sont souvent à la portée des moins nantis (2, 7).

La conservation efficace des sols agricoles d'une région passe impérativement par l'analyse et la compréhension de son régime foncier (8). Un certain nombre d'études révèlent que les facteurs liés à la taille du patrimoine foncier et à la démographie sont importants dans la détermination de la participation des agriculteurs à la gestion de la terre et de l'eau ou aux activités de développement des bassins versants (19).

D'après Sunderlin et $a l$. (15), la crise caféière des années 1990 a entraîné, dans la zone d'étude, I'abandon de la caféiculture au profit des cultures maraîchères qui sont devenues les principaux produits de rente. Contrairement au caféier, ces cultures nécessitent un travail permanent du sol, exposant ainsi ce dernier à l'érosion par ruissellement. Dans la zone d'étude, environ 51\% de la superficie totale sont occupés par des pentes supérieures à 25\% (18). L'exploitation des fortes pentes sans mesures de conservation des sols entraîne depuis les années 1990 et jusqu'à nos jours des pertes multiples dont on peut citer entre autres la dégradation des sols et la baisse des rendements.

Les expérimentations réalisées sur la mise en œuvre du billonnage cloisonné pendant les campagnes agricoles 2013 et 2014, ont démontré l'efficacité de cette technique antiérosive dans la diminution des pertes en terre et l'augmentation des rendements (3). La présente étude vise globalement à quantifier le taux d'adoption du billonnage cloisonné et à contribuer à l'identification des déterminants de I'adoption des techniques de conservation des sols et des eaux dans les collines des Hauts Plateaux de I'Ouest-Cameroun.

On partira des aptitudes agronomiques des parcelles du point de vue paysan à l'adoption des aménagements antiérosifs. Les aptitudes agronomiques des parcelles seront scientifiquement vérifiées par l'analyse physico-chimique des sols qui pourra faire le lien entre leurs éléments constitutifs et la conception paysanne de la fertilité. On examinera en suite la place du rang social et du genre dans les processus d'accès à la terre et d'exploitation des fortes pentes, ces processus ayant pour support la situation économique des agriculteurs. L'atteinte de l'objectif passe donc par la vérification de quatre hypothèses de recherche:

1. Les aptitudes agronomiques des parcelles, telles que reconnues par les agriculteurs, et scientifiquement vérifiées par les analyses physico-chimiques du sol, influencent l'implémentation des techniques antiérosives.
2. Le rang social et l'aspect genre influencent l'accès à la propriété foncière et la mise en œuvre des techniques de conservation des sols.
3. Les techniques de conservation des sols et des eaux sont indispensables dans les fortes pentes mais leur taux d'adoption y est faible.
4. L'adoption des aménagements antiérosifs est influencée par la situation économique des agriculteurs.

Matériels et méthodes

Milieu d'étude

Cette étude a été conduite dans les villages Mélang et Messong du groupement Fongo-Tongo.
Ce groupement, qui est le chef-lieu de l'Arrondissement portant le même nom, est situé au Cameroun dans la Région de l'Ouest, Département de la Ménoua (Figure 1). Le choix de ce groupement a été motivé par le fait qu'il a les caractéristiques typiques des Hauts Plateaux de I'Ouest-Cameroun en termes d'altitude, de densité de population et d'exploitation de fortes pentes (> 22\%) (16). Ces fortes pentes sont intensément exploitées dans les villages Mélang et Messong (Figure 2).
La zone agro-écologique des Hauts Plateaux de ।'Ouest-Cameroun couvre les Régions de I'Ouest et du Nord-Ouest avec une altitude moyenne de 1450 m (5). La température moyenne maximale est de $22{ }^{\circ} \mathrm{C}$, tandis que la température moyenne minimale est de $17^{\circ} \mathrm{C}$. Les précipitations annuelles sont comprises entre 1000 et 2000 mm et tombent sur une longue saison des pluies qui va de mi-mars à mi-octobre (16). Dans les Hauts Plateaux de I'Ouest-Cameroun; 85,4\% des paysans restent attachés aux méthodes traditionnelles de préparation des lits de semence qui, pour la plupart, constituent une menace pour la conservation des sols et des eaux, d'où le fort intérêt de prendre et de respecter certaines règles d'utilisation (6,17). Les régions Ouest et Nord-Ouest figurent parmi les quatre régions les plus peuplées du Cameroun avec des densités de population 2,5 à 3 fois supérieures à la moyenne nationale qui s'établit à $42 \mathrm{hab} / \mathrm{km}^{2}$ (14). Selon nos investigations, la densité de population dans les villages Mélang et Messong est d'environ 350 hab/km².

Source: Tirée et adaptée de l'INC (10).
Figure 1: Situation géographique de la zone d'étude.

Source: Image auteur, 2013
Figure 2: Paysage des collines du groupement Fongo-Tongo.

Collecte des données

Une enquête par questionnaire a été conçue et administrée aux agriculteurs exploitant les collines des villages Mélang et Messong du groupement Fongo-Tongo. Un total de 168 agriculteurs a été recensé dans les collines des villages Mélang et Messong regroupant respectivement 97 et 71 agriculteurs. Cent-cinquante-sept des 168 agriculteurs recensés ont répondu au questionnaire conçu pour cette étude, soit un taux de participation de 94%. Ces répondants possédaient au total 230 parcelles occupant une superficie totale de 94 ha répartie sur plusieurs pentes de différentes valeurs. Les superficies de ces parcelles recensées étaient comprises entre 0,1 ha et 0,9 ha. Sur chaque parcelle inventoriée, la pente a été calculée en faisant le rapport du dénivelé sur la longueur de la parcelle dans le sens du travail du sol. A l'aide d'un global positioning system (GPS), les valeurs de I'altitude des deux extrémités de la parcelle ont été mesurées et le dénivelé a été obtenu en faisant la différence de ces deux valeurs, la longueur de la parcelle ayant été mesurée par un décamètre. Les exploitants des parcelles ont été interrogés afin d'obtenir les informations portant globalement sur les différentes démarches suivies pour accéder à la propriété foncière, les facteurs qui influencent I'exploitation des pentes, les critères de choix des modes de préparation du sol pour le cultiver.

La reconnaissance des espèces indicatrices de la qualité des sols a été faite par les agriculteurs et leur identification par le laboratoire de botanique de I'Université de Dschang. Pour obtenir les échantillons de sols et les mesures de différenciation des profils, une fosse mesurant 2 m de longueur sur 1 m de largeur et 2 m de profondeur a été creusée dans chacun des endroits où la végétation était dominée par une espèce végétale indicatrice de la qualité du sol (Figure 3). L'analyse physico-chimique des échantillons de sol a été réalisée par le laboratoire d'analyse des sols et de chimie de l'environnement de I'Université de Dschang.
Les données concernant l'adoption du billonnage cloisonné, technique antiérosive de préparation du sol, ont été collectées pendant la campagne agricole 2014 (3).

Traitement des données

Pour une meilleure analyse des données, les pentes ont été regroupées en deux grandes classes: la classe des pentes comprises entre 11% et 17% rassemblant les pentes de 11\%, 14\% et 17\% et la classe des pentes comprises entre 22% et 29% composées des pentes de $22 \%, 26 \%$ et 29% (Tableau 1). Le rang social a lui aussi a été regroupé en deux principales classes: le groupe des dignitaires (Chefs, Notables, Elites et Héritiers) et le groupes des autres (Fils non héritiers et Femmes). Les données ont été traitées selon la méthode d'analyse de la variance par le test de Chi-deux au seuil de signification de 5\%.

Figure 3: Identification des profils du sol sous espèces indicatrices de la qualité du sol.

Tableau 1
Exploitation et propritaires des parcelles dans les pentes par rang social.

Tranches sociales		Pente 11\%	Pente 14\%	Pente 17\%	Pente 22\%	Pente 26\%	Pente 29\%	Total
Dignitaires	Chefs	15	8	0	0	0	0	23
	Notables	23	3	1	0	0	0	27
	Elites	6	4	0	0	0	0	10
	Héritiers	15	2	4	1	5	15	42
Autres		3	5	20	16	15	69	128
Total		62	22	25	17	20	84	230

Résultats

Les sols

Les caractéristiques physico-chimiques de I'horizon de surface des sols étudiés sont consignées dans le tableau 2.

Le tableau 2 montre que les sols sur lesquels la végétation est majoritairement constituée de Pennisetum spp ont un horizon de surface peu profond ($<30 \mathrm{~cm}$) et une terre riche en matière organique. Les sols sur lesquels la végétation est constituée des espèces Imperata cylindrica ou Melinis minuciflora ont un horizon de surface profond (>30 cm) avec une terre pauvre en matière organique.
Le tableau 3 montre les trois profils de sols étudiés, les noms des espèces végétales dominantes en place, l'indice de qualité du sol et le coût d'acquisition au mètre carré. Un hectare de terrain coûte 4574 EUR (soit $300 \mathrm{XAF} / \mathrm{m}^{2}$) pour les sols fertiles contre 3049 EUR (soit $200 \mathrm{XAF} / \mathrm{m}^{2}$) pour les sols pauvres. XAF est le Franc CFA d'Afrique centrale.

Propriété foncière et exploitation des pentes par rang social

Dans la zone d'étude, cinq modes principaux d'acquisition des terres ont été inventoriés. Ce sont I'héritage, l'achat, la cession temporaire, le don et la location pour des proportions totales respectives de 31%; 25\%; 21\%; 13\% et 10\% (Figure 4).

Quatre-vingts pourcents des parcelles achetées proviennent des réserves de la chefferie.

Considérant chaque proportion totale à 100%, les femmes possèdent 5%, $15 \%, 7 \%$ et 18% respectivement de l'achat, la cession temporaire, le don et la location.

Dans les pentes, les exploitants de parcelles ne sont pas toujours propriétaires de ces dernières comme le montre le tableau 4.

Du tableau 4, il ressort que les dignitaires (Chefs, Notables, Elites et Héritiers) exploitent 79% et 21% de parcelles dans les pentes de $11 \%-17 \%$ et $22 \%-$ 29% respectivement. Par contre les autres (Fils non héritiers et Femmes) exploitent 22% et 78% de parcelles dans les pentes de $11 \%-17 \%$ et $22 \%-29 \%$ respectivement.

Le tableau 4 montre également que les dignitaires possèdent respectivement 59% et 41% de parcelles dans les pentes de $11 \%-17 \%$ et $22 \%-29 \%$, puis les autres possèdent respectivement 19% et 81% de parcelles dans les pentes de $11 \%-17 \%$ et $22 \%-$ 29\%.

Taux d'adoption des techniques de conservation des sols

Les techniques de conservation des sols et des eaux (billonnage cloisonné) sont adoptées par 87% de chefs, 93\% de notables, 100\% d'élites, 90\% d’héritiers et 62\% d'autres agriculteurs (Figure 5).

Tableau 2

Caractéristiques physico-chimiques de l'horizon de surface des sols.

Sol	Epaisseur (cm)	Texture (\%)			$\mathrm{pH}_{\mathrm{H} 2 \mathrm{O}}$	$\mathrm{pH}_{\mathrm{Kcl}}$	MO (\%)	$\begin{gathered} \text { CEC } \\ \text { (méq/100g) } \end{gathered}$	Bases échangeables (méq/100g)				
		Sable	Argile	Limon					Ca^{2+}	Mg^{2+}	K^{+}	Na^{+}	S^{2-}
S1	23	32	38	30	5,9	4,7	9,97	16,6	4,8	2,5	0,14	0,01	7,45
S2	8	32	36	32	5,6	5,1	8,81	13,5	4,48	1,6	0,2	0,01	6,29
S3	31	20	58	22	6,1	4,6	6,12	10,3	4,64	2,24	0,18	0,01	7,07

S1 = sol sous Pennisetum purpureum $\mathrm{S} 2=$ sol sous Pennisetum clandestinum $\mathrm{S} 3=$ sol sous Imperata cylindrica et Melinis minutiflora $\mathrm{MO}=$ matière organique

Tableau 3
Quelques espèces indicatrices de la qualité du sol.

Profil	Nom scientifique	Nom commun	Nom vernaculaire	Indicateur	Cout (EURO/m²)
P1	Pennisetum clandestinum	Kikuyu	Nkoukouyong	Fertile	0,46
P2	Pennisetum purpureum	Napier grass	Messessoung	Fertile	0,46
	Imperata cylindrica	Red Baron	Pang keneuh	Pauvre	0,3
P3	Melinis minutiflora	Molasses grass	Gahté		

P1 = profil du sol sous Pennisetum purpureum \quad P2 $=$ profil du sol sous Pennisetum clandestinum
P3= profil du sol sous Imperata cylindrica et Melinis minutiflora 1 euro $=655,957$ XAF (Franc CFA d'Afrique centrale)
Source: Enquêtes de terrain, 2014.
Tableau 4
Distribution de fréquence des propriétaires et exploitants de parcelles par rang social et par classe de pentes.

Tranches sociales	Pente entre 11% et 17%			Pente entre 22% et 29%		
		Propriétaire	Exploitant		Propriétaire	Exploitant
Dignitaires	Chefs	25	23		11	0
	Notables	32	27		15	0
	Elites	10	10		0	0
Autres	Héritiers	29	21		40	21

Source: Calculée à partir des données d'enquêtes de terrain, 2012.

Source: Calculée à partir des données d'enquêtes, 2012.
Figure 3: Distribution de fréquences des principaux modes d'acquisition des parcelles.

Source: Calculée à partir des données de terrain, 2014.
Figure 5: Distribution de fréquence totale et fréquence d'adoption du billonnage cloisonné.

Discussion

Les sols sous Pennisetum spp présentent un profil avec des limites des horizons bien différenciées, tandis que les sols sous Imperata cylindricum et Melinis minutiflora ont un profil avec des limites des horizons diffuses (Figure 3). L'analyse physicochimique des échantillons de sols a donné des valeurs de pH indiquant que les sols sont en général acides dans la zone d'étude, et a montré que les sols sous Pennisetum spp sont plus riches en matière organique que ceux sous Imperata cylindricum et Melimus minutiflora (Tableau 2). Ce qui amènerait à dire que les aptitudes agronomiques des parcelles perçues à priori par les agriculteurs à l'aide des espèces végétales en place sont compatibles avec celles des scientifiques (Tableaux 2 et 3). Les espèces indicatrices de la qualité du sol se trouvent sur tous les types de terroirs; on les rencontre sur des pentes aussi bien faibles que fortes.

L'étude a montré que les aptitudes agronomiques des parcelles sont un facteur déterminant dans la mise en œuvre des techniques de conservation des sols, les élites n'acquérant que de bonnes terres et préparant tous leurs lits de semences en billonnage cloisonné (Figure 5).
D'après les agriculteurs interrogés, certains dignitaires (surtout les héritiers) exploitent généralement leurs parcelles dans des fortes pentes
couvertes par les espèces végétales indiquant de bonnes aptitudes agronomiques pendant au moins une campagne agricole avant de les céder aux autres lorsqu'ils constatent que le sol de ces parcelles devient moins productif. En effet, ces dignitaires exploitent leurs parcelles dans des fortes pentes par des techniques traditionnelles de préparation du sol (préparation du lit de semence à plat ou billonnage suivant la plus forte pente) comme si celles-ci étaient situées dans des plaines ou dans des faibles pentes. Au bout de cette brève exploitation, si ces dignitaires ont besoin d'argent, ils cèdent les parcelles déjà exploitées en location ou en vente définitive. Cette fertilité s'avère de très courte durée car la préparation du sol à plat et le billonnage suivant la plus forte pente sont des techniques qui favorisent la migration des sédiments contenant la matière fertilisante ou la matière organique des sommets vers les bas-fonds et les cours d'eau. Il a été démontré qu'en valeur monétaire le groupe de sols fertiles coute une fois et demie celui de sols pauvres situés dans la même pente (Tableau 3). La colonisation des collines de fortes pentes s'expliquerait par la complexité du régime foncier et la recherche des terres fertiles. Toutes choses étant égales par ailleurs, les végétaux indicateurs de la qualité du sol orientent les propriétaires terriens et les solliciteurs des parcelles dans les différentes transactions foncières.

Pour l'exploitation des pentes, le test de Chi-deux a montré une différence significative entre les dignitaires et les autres exploitants ($X=75,3732$; $p=0,0000$). Plus la valeur de la pente est élevée, moins les dignitaires s'intéressent à l'exploitation des parcelles; les élites sont complètement absentes dans les pentes comprises entre 22% et 29\% (Tableau 4).
Concernant les propriétaires des parcelles dans les pentes, on note une différence significative entre les agriculteurs appartenant au rang social de dignitaires et les autres agriculteurs ($X=30,9549$; $p=0,0000$). Toutes pentes confondues, on peut dire que l'accès à la propriété foncière et l'exploitation de fortes pentes sont influencés par le rang social des agriculteurs (Tableau 4). Au regard de la législation foncière (système moderne) existante au Cameroun, Guiffo (8) stipula que tous les individus avaient en principe des droits égaux d'accès à la terre parce que le système foncier moderne l'emporte sur le système foncier coutumier. Les résultats de cette étude ont montré cependant que les assises foncières des paysans reflètent les inégalités socio-économiques existantes. En effet, seules les parcelles appartenant aux dignitaires comportent le plus souvent tous les types de terroirs étudiés (Tableau 4), ce qui amènerait à dire que la classe sociale des dignitaires contrôle l'accès à la terre. D'ailleurs, ayant majoritairement acquis ces terres par héritage ou par mérite personnel (4), ils ne sauraient être facilement expropriés. Au regard du cout élevé des parcelles dans le groupement Fongo-Tongo et de la forte implication des élites, le système foncier actuel encouragerait d'une part l'application de bonnes méthodes de conservation des sols par les dignitaires (Figure 5), et d'autre part, la dégradation rapides des sols dans les fortes pentes exploitées par les agriculteurs du rang social des autres. Il faut également noter que l'implication des élites dans le foncier encourage I'exode rural. En effet, le salaire des ouvriers ne permet plus aux jeunes non dignitaires de vivre au village, de pouvoir acquérir un lopin de terre, et surtout d'adopter ou de mettre en place des méthodes de conservation des sols; presque toutes les parcelles potentielles étant exposées aux risques d'érosion par ruissellement.

Au cours de nos investigations, il nous a été rapporté que les réserves de la chefferie, même dans les fortes pentes, sont constamment mises en vente et les agriculteurs non héritiers et moins nantis qui les exploitaient sous simple demande adressée au Chef $(2,7)$ n'ont plus facilement accès à la terre agricole. Les personnes les plus défavorisées étant davantage expropriées par les élites, on se trouve actuellement dans une forme locale d'accaparement des terres.
D’après Dongmo (4), la société bamiléké est structurée en classes bien hiérarchisées. La stratification sociale, essentiellement masculine, est fonction de la descendance, mais aussi et surtout, de la bravoure et du mérite personnel. Les femmes sont exclues de l'appropriation des terres et de I'héritage. Cette étude a montré que les femmes restent exclues de l'héritage mais elles sont désormais propriétaires terriens au même titre que les hommes par achat, par cession temporaire ou par don. Elles exploitent aussi des parcelles acquises par location (Figure 4). Il faut cependant noter que leur proportion reste faible. D'après les agriculteurs interrogés, les femmes possédant des parcelles sont appelées communément «femmes capables». Ces femmes se distinguent des autres par ce qu'elles tirent ou avaient tiré principalement leurs revenus du commerce, ce qui leur a permis d'épargner.
L'adoption du billonnage cloisonné montre une différence significative entre la classe des dignitaires et celle des autres ($x=7,6748 ; p=0,0055$). On a noté un taux d'adoption de 93% en moyenne chez les dignitaires contre 62% chez les autres agriculteurs (Figure 5). La forte implication des dignitaires dans les techniques antiérosives peut s'expliquer par le fait qu'ils supportent sans grandes difficultés les couts supplémentaires de production (3). De même les exploitants des fortes pentes étant en majorité des personnes démunies (Tableau 4), il leur est difficile d'adopter les techniques de conservation des sols. On peut donc dire que I'adoption des techniques antiérosives est fortement influencée par la situation socio-économique des agriculteurs.
Dans la zone d'étude, l'implémentation des techniques de conservation des eaux et des sols se
heurte aux agriculteurs «non dignitaires» qui exploitent les parcelles à risque sur lesquelles il faudrait agir prioritairement (Tableau 4). En raison des surcouts que le billonnage cloisonné entraine (3), il s'est avéré que ces exploitants des parcelles à risque avaient des difficultés à changer leurs pratiques culturales (Figure 5) même si ce changement serait bénéfique sur le long terme. il faut également noter que les organisations paysannes sont inexistantes. Si ces organisations étaient mises en place, elles permettraient aux petits agriculteurs de bénéficier de petits projets communautaires et de demander des crédits agricoles auprès des institutions financières. Il serait donc souhaitable d'aider les agriculteurs en général à former des organisations paysannes bien structurées et de soutenir financièrement les exploitants des fortes pentes ou encore de trouver d'autres techniques antiérosives moins exigeantes que le billonnage cloisonné.

Conclusion

Dans les collines du groupement Fongo-Tongo, cinq modes d'accès à la terre ont été identifiés: l'héritage, l'achat, la cession temporaire, les dons et la location. Cette étude a montré que les agriculteurs ont la capacité de distinguer les sols fertiles des sols pauvres par les espèces végétales en place. Deux grandes classes de sols ont été identifiées à l'aide de cette méthode: les sols dits «fertiles» sous Pennisetum spp et les sols dits «pauvres» sous Imperata cylindrica et Melinis minutiflora. Les résultats de cette approche paysanne de classification des sols ont été confirmés par des analyses physico-chimiques des échantillons de sols prélevés sous ces espèces végétales. A valeur de pente égale, les sols fertiles coutent une fois et demie les prix des sols pauvres. Deux principaux rangs sociaux ont été déterminés, le rang social des dignitaires (Chefs, Notables, Elites et Héritiers) et le rang social des autres (fils non héritiers et femmes). Les femmes qui disposent des moyens financiers (élites ou communément appelées «femmes capables») ont désormais accès à la terre. Afin de réduire les inégalités sociales qui existent dans la zone d'étude, il serait intéressant que les chefferies limitent l'acquisition des parcelles
par des élites car cela se traduit par une augmentation du prix des terres. Les parcelles situées dans les pentes comprises entre 11% et 17% sont en majorité exploitées par les dignitaires qui sont également propriétaires de ces dernières ; 93% de ces agriculteurs ont adopté le billonnage cloisonné comme technique de conservation des sols. Par contre, la quasi-totalité des parcelles situées dans les pentes comprises entre 22% et 29% sont la propriété des dignitaires mais sont majoritairement exploitées par les agriculteurs appartenant à un rang social moins élevé avec un faible taux d'adoption des techniques de conservation des sols alors qu'elles sont exposées à un risque d'érosion par ruissellement plus élevé que celles situées dans les pentes comprises entre 11% et 17%. Dans l'ensemble, l'accès à la propriété foncière, l'exploitation des pentes, et l'adoption des techniques de conservation des sols et des eaux sont influencés par les aptitudes agronomiques des parcelles et la situation socio-économique des agriculteurs.
Il serait souhaitable que les pouvoirs publics mettent en place un système de micro-crédit qui permettrait aux petits agriculteurs de supporter les couts supplémentaires induits par les techniques de conservation des sols. Le problème pourrait également être résolu par la facilitation du regroupement des agriculteurs en organisations paysannes tels les groupes d'initiative commune, les groupements d'intérêt économique ou les coopératives. D'autres techniques de conservation des sols à moindre cout (haies vives par exemple) et compatibles avec les espèces cultivées dans la zone devraient être introduites et soutenues.

Remerciements

Les auteurs remercient madame V. Mansutti pour son soutien financier à leurs travaux de recherche et l'ensemble des notables et agriculteurs pour leur effort dans la collecte des données, spécialement leurs leaders messieurs B. Nanfack (Fonkah), S.C. Djoukeng (Wamba Nkem) et E.T. Ngouné (Nkem sa'ah). Ils tiennent également à remercier messieurs les professeurs T.F. Oben et A. Onana de la Faculté d'Agronomie et des Sciences Agricoles (Université de Dschang, Cameroun) pour l'analyse des sols.

Références bibliographiques

1. Bilsborrow R.E. \& Carr D.L., 2001, Population, Agricultural Land Use and the Environment in the Developping World. In Tradeoffs or Synergies? Agricultural Intensification, Economic Development and the Environment. Ed. D.R. Lee and C.B. Barrett, Wallingford, U.K., CABI Publishing Co.: 35-56.
2. Boutrais J., 1992, L'élevage en Afrique: une activité dégradante, Environ. Afr. Contemp., 161, 109-125.
3. Djoukeng H.G., Tankou C.M. \& Degré A., 2015, Siltation and Pollution of Rivers in the Western Highlands of Cameroon: a Consequence of Farmland Erosion and Runoff, Intern. J. Agric. Res. Rev., 3, 3, 206-212.
4. Dongmo J.L., 1981, Le dynamisme Bamiléké. Vol. 1, La maîtrise de l'espace agraire, Yaoundé, CEPER, 2 tomes, 716.
5. Fotsing J.M., 1992, Diagnostic des problèmes d'érosion et éléments de solution en pays Bamiléké Cameroun, Bull. Réseau Erosion, 12, 241254.
6. Fotsing J.M., 1993, Érosion des terres cultivées et propositions de gestion conservatoire des sols en pays Bamiléké (Ouest-Cameroun). Cah. ORSTOM, Sér. Pédol., 28, 2, 351-366.
7. Fotsing J.M., 1995, Compétition foncière et stratégies d'occupation des terres dans le Cameroun de l'ouest. Terre, terroir, territoire. Les tensions foncières, Collection Colloques et Séminaires, Ed. ORSTOM, 131-148.
8. Guiffo J., 2005, Le titre foncier au Cameroun, Ed. Essoah, 158 p.
9. Hamani G., 2005, Les notables de l'OuestCameroun: rôle et organisation dans les institutions traditionnelles, L'Harmattan, 170 p.
10. INC, 2013, Institut National de Cartographie: Cartes régionales du Cameroun. Doc. Interne, 127.
11. Lavigne-Delville, P., Toulmin, C. \& Traoré, S., 2000, Gérer le foncier rural en Afrique de l'Ouest: dynamiques foncières et interventions publiques Karthala/Ed. URED, 357 p.
12. Ndjogui T.E. \& Levang P., 2013, Elites urbaines, elæiculture et question foncière au Cameroun, Territoires Afr., 5, 35-46.
13. PNGE, 1996, Plan National de Gestion de I'Environnement du Cameroun, Rapport principal. Vol. 1, Ministère de I'Environnement et des Forêts, PNUD, Banque Mondiale, 190 p.
14. RGPH, 2010, Troisième Recensement Général de la Population et de I'Habitat, 10 p.
15. Sunderlin W.D., Ndoye O., Biki H., Laporte N., Mertens B. \& Pokam J., 2000, Economic crisis, small-scale agriculture, and forest cover change in southern Cameroon, Environ. Conserv., 27, 284290.
16. Tankou C.M., 2014, The interactions of Human Mobility and Farming Systems on Biodiversity and Soil Quality in the Western Highlands of Cameroon. Langaa Research \& Publishing Common Initiative Group, Bamenda, North-West Region, Cameroon. 180 p.
17. Tchawa P., 1993, La dégradation des sols dans le Bamiléké méridional, conditions naturelles et facteurs anthropiques, Cah. Outre-Mer, 46, 181.
18. Tsayem Demaze M., 1995, Milieu physique, environnement humain et dégradation des sols en pays bamiléké de l'ouest du Cameroun. Environnement humain de l'érosion, Réseau ErosionBull., 15, 329-339.
19. Zweifler M.O., Gold M.A. \& Thomas R.N., 1994, Land Use Evolution in Hill Regions of the Dominican Republic, Prof. Geogr., 46, 39-53.
H.G. Djoukeng, Camerounais, PhD, ancien Doctorant, Université de Liège - Gembloux Agro-Bio Tech, Département Ingénierie des Biosystèmes, Axe Échanges Eau-Sol-Plante, Gembloux, Belgique.
T. Dogot, Belge, PhD, Professeur, Université de Liège - Gembloux Agro-Bio Tech, Département Agronomie, Bio-ingénierie et Chimie, Axe Modélisation et Développement/Économie et Développement Rural, Gembloux, Belgique.
C.M. Tankou, Camerounais, PhD, Maître de Conférences, Université de Dschang, Faculté d'Agronomie et des Sciences Agricoles, Département d'Agriculture, Dschang, Cameroun.
A. Degré, Belge, PhD, Professeure, Université de Liège - Gembloux Agro-Bio Tech, Département Ingénierie des Biosystèmes, Axe Échanges Eau-Sol-Plante, Gembloux, Belgique.

[^0]: ${ }^{1}$ Université de Liège - Gembloux Agro-Bio Tech, Départ. Ingénierie des Biosystèmes, Axe Échanges Eau-Sol-Plante, Gembloux, Belgique.
 ${ }^{2}$ Université de Liège - Gembloux Agro-Bio Tech, Départ. Agronomie, Bio-ingénierie et Chimie, Axe Modélisation et Développement/Économie et Développement Rural, Gembloux, Belgique.
 ${ }^{3}$ Université de Dschang, Faculté d’Agronomie et des Sciences Agricoles, Département d'Agriculture, Dschang, Cameroun.
 *Auteur correspondant: E mail: aurore.degre@ulg.ac.be
 Reçu le 12.05.15 et accepté pour publication le 09.09.15

