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Summary

A field study was carried out in the village Ngoungoumou 
in the humid forest zone of Cameroon to assess changes 
in particle size distribution and soil chemical properties in 
relation to different land-use systems. These strongly acid 
soils are mainly composed of clay and sand, and are generally 
devoid of crop nutrients at the benefit of exchangeable Al 
occupying the nearly entire exchange complex. The major 
portion of the nutrients is stored in the top-soil, together 
with the organic matter. Land-use systems significantly 
affected the clay, the silt and the sand fractions. Sand and silt 
decreased with the soil depth whereas clay increased with it. 
Soil pH, total N, organic carbon, available P, exchangeable 
Ca, exchangeable Al, sum of bases, ECEC and Al saturation 
significantly differed with the land-use systems. Al saturation 
increased with soil depth, and the top-soils presented 
acidity problems while the sub-soils exhibited Al toxicity. 
Chromolaena odorata fallows presented relative higher soil 
fertility, secondary forests and cocoa plantations the lower. 
Utilization of harvest residues, wood ash or lime; Ca, N, P, 
K and Mg fertilizations according to crop requirement; acid-
tolerant crops and N fixing trees for acid soils appear to be 
the most appropriate soil management options. 

Résumé

Impact des systèmes d’utilisation des terres sur 
quelques propriétés physiques et chimiques d’un Oxisol 
dans la zone forestière humide du Sud Cameroun    
Une étude a été effectuée dans le village Ngoungoumou en 
zone de forêt humide du Sud Cameroun en vue d’évaluer les 
fluctuations de la texture et des propriétés chimiques du sol 
par rapport aux différentes utilisations des terres. Ces sols 
très acides sont principalement composés d’argile, et sont 
généralement dépourvus d’éléments nutritifs au profit de l’Al 
échangeable occupant presque entièrement le complexe 
d’échange. La majeure portion d’éléments nutritifs est stockée 
dans la couche supérieure avec la matière organique. Les 
systèmes d’utilisation des terres ont affecté significativement 
les fractions argileuse, limoneuse et sableuse. Le pH du 
sol, l’azote total, le carbone organique, le P assimilable, le 
Ca échangeable, l’Al échangeable, la somme des bases, 
l’ECEC et la saturation d’Al varient significativement suivant 
les types d’utilisation des terres. L’ azote total et la saturation 
d’Al augmentent avec la profondeur du sol. Les jachères 
de Chromolaena odorata montrent une fertilité élevée alors 
que les forêts secondaires et les cacaoyères présentent une 
fertilité faible. L’utilisation des résidus de récolte, des cendres 
de bois, le chaulage et les fertilisations calcique, azotée, 
phosphatée, potassique et magnésique, la mise en plantation 
de cultures et de légumineuses acido-tolérantes paraissent 
être les alternatives les plus appropriées de gestion des sols. 

Introduction

 Lal (16) and Shepherd et al. (30) experienced that land use 
in tropical ecosystems could cause significant modifications 
in soil properties. Schipper and Sparling (29), and Birang et 
al. (2) added that those modifications were biologically and 
chemically more rapid than physically. Forest ecosystems 
are important both ecologically and economically. It is 
arguable that the most fundamental dynamic of the forest 
ecosystem is the forest soil. The acidity of forest soils can 
alter the chemistry, biology, and hydraulics of the soil, and 
thus, alter the soil formation characteristics and the soil 
composition. In consequence, that in the fragile tropical 
forest ecosystems, the acidification of soils demands a 
great deal of research and attention. In the humid forest 
zone of Cameroon, slash-and-burn is commonly practiced 
to settle perennial or annual crops. Shifting cultivation, with 
one to two years of cropping followed by fallow periods, is 
widespread. Research of impacts on the soil is important 
to determine how soil fertility can be maintained and the 
land-use systems improved. Shepherd et al. (30) observed 
no change in particle size distribution and significant 
modifications in chemical properties in the top-soil that 
affects agricultural productivity. In this study, the effects 
of land-use systems are evaluated on the following soil 

properties: particle size distribution (sand, clay, silt), pH, 
organic carbon, total nitrogen, available P, exchangeable 
bases (Ca, Mg, K), exchangeable Al, ECEC, base saturation 
and Al saturation in soils of secondary and young forests, 
cocoa plantations, Chromolaena odorata fallows and 
cropped fields of Ngoungoumou village near Ebolowa in 
Cameroon.

Material and methods

Location
The geographical references of Ngoungoumou village are 
12o 01’ E, 3o 18’ N and its elevation is about 585 meters 
above the sea level in the forest zone of Cameroon (Figure 
1). Annual rainfall in the area is bimodal. Rains start in mid-
March and end in mid-June, followed by a short dry season 
of 7 to 8 weeks, then recommence in mid-September and 
stop in mid-December. The climate is humid tropical, with 
mean annual rainfall of 1350-1900 mm and air temperature 
of 22-26 oC. The natural vegetation is a dense humid semi-
deciduous tropical forest. Most of the upland soils belong to 
the group of Kandiudox (35).
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According to Nolte et al. (23), this area has 56.8% of land 
under forest, 10.2% under fallow and 12.6% currently being 
cropped. The 5 commonest land-use systems (LUS) of low 
level of deforestation and land-use intensity of the region 
are: a groundnut / maize / cassava annual inter-crop field 
(Crop), Chromolaena odorata dominated fallow (4-5 years 
old, Chro), a young forest fallow (12-15 years old, Yfor), a 
shaded cocoa plantation (Coco) and a secondary forest 
(> 30 years old, Sfor). The experimental design included 5 
land-use systems, 3 soil depths (0-0.1 m, 0.1-0.2 m and 
0.2-0.3 m) and 5 replicates. 

Experimental set-up
A 4-5 years old Chromolaena odorata fallow (Chro) and a 
10-12 years old forest (Yfor) were identified in the village. 
The site was selected on the basis of: size, as it was 
required to be at least 100 m x 25 m large; proximity of the 
two vegetation types; and, that the previous land use prior 
to vegetation succession to Chro or Yfor, was in all cases 
a mixed food crop field dominated by groundnut, maize 
and cassava. The site was divided into 6 plots, 15 m x 15 
m, located in the centre of the site and thus leaving border 
up to 5 m with the bordering vegetation. Three plots were 
cleared and burned and 3 served as undisturbed controls. 
In February 2000, the Chro plot and the under-storey of the 
Yfor were slashed. In the Yfor plot, all trees were manually 
felled. The biomass was left to dry and burned by the end 
of March 2000. In both fallow types, unburned materials 
were piled and burned again. The 3 cropped and the 3 
undisturbed plots served as replicates. 
An intercrop of groundnut (Arachis hypogea L.) local cultivar, 
maize (Zea mays L.) cultivar CMS 8704 and cassava (Manihot 
esculenta Crantz) cultivar 8017 was planted in both fallow 
types. First, groundnuts were seeded at approximately 20 
seeds.m-1, by tilling the grains into the soil with hand hoes. 
Cassava was planted at 1.5 m x 1.5 m inter- and intra-row 
distance. Two, approximately 0.3 m long, cassava sticks 
were planted in each hole. Two pockets of two maize seeds 
were planted between cassava pockets at 0.5 m distance 
between cassava pockets, yet only in one direction of the 
lines. Seedlings were in April 2000 and 2001.    
   
Soil sampling, physical and chemical analyses
Between May and August 1999, prior to establishing the 
cropped plots, five monoliths of 0.5 m x 0.5 m x 0.3 m (L x W 
x D) were dug out along a 100 m transect in each fallow. Soil 
samples were taken from these monoliths at three different 
depths (0-0.1 m, 0.1-0.2 m and 0.2-0.3 m) for physical 
and chemical analysis. Bulk soil samples were horizontally 
collected, air-dried, ground to pass a 2-mm mesh sieve 
and used for determining soil textural classes and chemical 
characteristics.
In 2001, soil was sampled at 0-0.1 m, 0.1-0.2 m and 0.2-0.3 m 
depths at groundnut and maize harvest in July. All the samples 
were oven dried at 65 oC, the ground to pass through a 0.5 
mm mesh size sieve and analyzed for pH, total N, organic C, 
available and exchangeable Ca, Mg, K and Al.

Figure 1: Location of the study site [adapted from ASB (1)].

Soil particle size was determined by the pipet method (10).
Soil pH was determined in a water suspension at a 2:5 soil/ 
water ratio. Exchangeable Ca2+, Mg2+, K+, Al3+ and available 
P were extracted by the Mehlich-3 procedure (19). Cations 
were determined by atomic absorption spectrophotometry 
and P by the Malachite green colorimetric procedure (21). 
Organic C was determined by chromic acid digestion and 
spectrophotometry (11). Total N was determined using the 
Kjeldahl method for digestion and ammoniumelectrode 
determination (3, 4).  

Statistical and numerical analyses
Analyses of variance were conducted using the General Linear 
Model (GLM) procedure of SAS. Statistical comparisons of 
land-use systems were performed by analysis of variance. 
The data for the various soil depths were grossly analyzed. 
When an F-test proved significant at p< 0.05, the means 
were grouped after the Student-Newman-Keuls Test. 

Results and discussion

Effect on soil particle size distribution 
The soils are mainly composed of sand and clay, clay being 
the most representative fraction. Silt represents 22.34 per 
cent in the top 0-0.1 m layer, 19.67 per cent in the 0.1-0.2 m 
layer and 12.59 per cent in the 0.2-0.3 m layer. The top-soil 
(0-0.1 m) features as a clay loam and the sub-soil as a clay. 
This derives from the dissolution and leaching of silica due 
to high rainfall. 
Land-use systems significantly affected the sand, the clay 
and the silt fractions of the soils (Figure 2). The sand and 
silt percentages decreased with the depth whereas the 
clay percentage increased with it, which was a sign of clay 
translocation. Clay accumulation in the sub-soil could result 
in reduced porosity, increased water retention and reduced 
drainage. But Voundi Nkana and Tonye (38) did not find that 
land-use systems affect the silt fraction distribution may be 
because their soils had less silt (11.6 per cent) compared to 



TROPICULTURA

17

the present ones (21 per cent) within the top 0-0.2 m layer. 
Kauffmann et al. (15) and Voundi Nkana and Tonye (38) 
found similarly that continuous cropping and intensive 
land use affected the particle size distribution and that 
these changes related to cultivation time. On the contrary, 
Shepherd et al. (30) observed no effect of land-use systems 
on soil particle size distribution. The closeness or differences 
of results might be due to the similarities or differences in 
ecosystems and climates of the places of the experiments. 
Nevertheless, as the overall soil texture must take into 
account both soil organic carbon and Ca contents (7), soils 
under Chromolaena odorata fallows had the highest Ca 
contents and the rest of land uses the lowest. Soils under 
secondary forests had the highest organic carbon contents 
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Figure 2: (a) Effect of land-use systems on soil particle size distribution		 (b) Soil particle size distribution in relation to the depth.

Table 1
 Effects of land-use systems on chemical properties of the soil

LUS pHH2O

(1:2.5)
Total N 
(%)

Org. C
(%)

LogavP*      
mg. kg-1

Ca Mg K Al ECEC

cmol. kg-1

Sfor
Coco
Yfor
Chro
Crop
P
R2 (%)
C.V. (%)
√MSE
Mean

4.13c
4.30b
4.59a
4.75a
4.75a
<0.0001
85
4.17
0.19
4.50

0.17a
0.10b
0.12b
0.11b
0.10b
<0.0001
88
21.26
0.03
0.12

2.24a
1.35c
1.72b
1.48cb
1.41c
<0.0001
87
19.63
0.32
1.64

0.98a
0.65b
0.75ba
0.47b
0.74ba
=0.0008
89
41.88
0.30
0.72

0.35b
0.32b
0.82b
1.42a
0.75b
= 0.0006
71
97.80
0.70
0.72

0.27a
0.24a
0.50a
0.43a
0.32a

0.09a
0.07a
0.07a
0.10a
0.08a

4.39a
3.53b
1.90d
2.70c
1.96d
< 0.0001
91
17.43
0.51
2.94

5.10a
4.16b
3.29c
4.66ba
3.12c
< 0.0001
79
16.70
0.68
4.09

   * LogavP= Log available P   
     LUS= Land-use systems.   

Table 2
Soil chemical properties changes in relation to the depth

Depth(m) pHH2O 

(1:2.5)
Total N
  (%) 

Org. C
  (%)

LogavP
mg.kg-1

Ca Al ECEC
cmol.kg-1

0 – 0.1
0.1 –0.2
0.2 –0.3
P

 4.45b
 4.33c
 4.72a
<0.0001

0.19a
0.10b
0.08c
<0.0001

2.52a
1.29b
1.16b
<0.0001

1.77a
0.29b
0.15b
< 0.0001

1.60a
0.25b
0.35b
<0.0001

2.26c
3.89a
2.64b
<0.0001

4.62a
4.42a
3.26b
<0.0001
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Figure 3:  	(a) Effect of land-use systems on base saturation (BS) 
	 and Al saturation (AlS)               				       (b) Soil Al saturation changes in relation to the depth.   

and Chromolaena odorata fallows the lowest. All the land-
use systems had a clay texture, except cocoa plantations 
that had a clay loam texture (Figure 2a). All this let presume 
that Chromolaena odorata fallows had the highest fertility 
and secondary forests the lowest. That statement will have 
to be confirmed or denied by the interpretations of soil 
chemical properties. 
  
Effect on soil chemical properties
All the measured soil chemical properties varied under the 
influence of the land-use systems (Table 1, Figures 3). Soil 
pH, total nitrogen, Organic carbon, available P, exchangeable 
Ca, exchangeable Al, base saturation, Al saturation and 
ECEC were significantly affected by the land-use systems. 



TROPICULTURA

18

Soil pH and nutrients were low (Table 1). Due to the 
strong acidity (pH< 5.5), these soils contained Al in the 
exchangeable form. The very low ECECs reminded that the 
adsorption capacity of these soils was humus-dependent. 
Menzies and Gillman (20) and Voundi Nkana et al. (36) 
justified this low and variable character of the CEC within 
the Cameroon humid forest zone by the domination of low 
–activity components such as kaolinite, Fe and Al (hydr-) 
oxides in these soils. That resulted from the higher degree 
of weathering of rock constituent minerals. In such soils, a 
large part of the plant nutrients and about 90 per cent of the 
capacity of the soil nutrient retention depends on soil organic 
matter (15). Buol et al. (5) noted that soils with ECEC of 4 
me/100g or less had limited ability to retain nutrient cations. 
The Al saturation increases with the soil depth (Figure 3b) 
from 49 per cent in the top-soil up to 81-88 per cent in the 
sub-soil (Table 2). Sanchez and Couto (27) defined two 
important thresholds values: soils with 10-60 per cent Al 
saturation present acidity problems while soils with more 
than 60 per cent Al saturation exhibit Al toxicity. Thus acidity 
problems will occur in the top-soil and Al toxicity problems 
in the sub-soil. 
 Statistically the three depths significantly differ for most soil 
properties except for Mg and K. The relative richness of the 
top 0-0.1 m layer (Table 2) could be attributed to the regular 
restitution of N, P and basic cations at the soil surface via 
decomposition or burning of plant residues or biomass (6). 
The limited amount of exchangeable Al in the top-soil could 
be due to complexation with organic matter because it is in 
that layer where this latter concentrated. 
In general, soils of Chromolaena odorata fallows presented 
a higher fertility level (higher soil pH, higher Ca content and 
lower Al saturation) compared to those of the other land-use 
systems (Table 1, Figure 3a). Soils under secondary forests 
and cocoa plantations showed a lower soil fertility level.  
Although in another soil types and climate, and with different 
land-use systems, Schipper and Sparling (29) and Shepherd 
et al. (30) obtained similar results for the chemical status 
among land-use systems. According to those authors, soil 
chemical status was increased in non-woodland systems, 
due to management. The highest soil fertility status in 
Chromolaena odorata fallows could be thus due to the fact 
it is herbaceous, covers well the soil-surface and does not 
immobilize plant nutrients for a long period in the standing 
biomass leading to a shortening of the nutrient cycling. 
In addition, these fallows might have especially taken 
advantage of the residual effect of the wood ash from the 
slash-and-burn practice. 
In cropped fields, the ash deposited by the slash-and-
burn practice releases alkaline cations (Ca, Mg and K) and 
P, causing high pH, available P and low exchangeable Al 
values (6, 13). The lowest content of organic carbon in soils 
under cropped fields is due to the rapid decomposition and 
mineralization of organic matter subsequent to clear cutting 
of the forest and burning (24) because of low temperature 
and low pH. Indeed, high temperature and high pH stimulate 
biological activity. Therefore, decomposition rates of organic 
matter increases with increasing temperatures and pH. The 
reverse situation occurs in the case of secondary forests. 
The lowest soil fertility status in secondary forests and 
cocoa plantations is due to natural acidity conditions in the 
soil (6). Moreover, Erisman and Heij (8) found that natural 
and anthropogenic atmospheric acidifications take place 
regardless of the type of land use.  According to them, apart 
from rarely serious direct damage by NH

3 and SO2 on plant 
leaves, atmospheric acidification on arable land is of little 
concern in the Netherlands. Firstly, most agricultural land 
is regularly limed or made so to undo the effects of natural 
acidification and of crop removal. Secondly, forest soils 
are usually poorer (i.e. lower in bases and in weatherable 

minerals) than most agricultural soils, and are therefore 
more sensitive to acidification by strong mineral acids.  
Thirdly, dry deposition is generally higher on trees than on 
lower vegetations, increasing the acid deposition on forests 
relative to that on agricultural land. Deposition on forests 
is increased most strongly along forest edges. Acid forest 
soils often develop high levels of soluble aluminum. In fact, 
the more acidified a soil is, the more aluminum rich clay 
particles will release Al into solution (31). This can be seen 
from field research as demonstrated by Mulder et al. (22).

Differentiation factors
Under secondary forests and cocoa plantations, erosion is 
minimal and the particle size distribution is dominated by the 
clay fraction in the top and sub-soil (Figure 2). Soil fertility 
then depends on the organic matter supply by the natural 
vegetation and the nutrient cycling (13). In cropped fields, 
exposure of the soil surface to heavy rains brings about 
erosion, rapid decomposition and mineralization of soil 
organic matter, and intense leaching of nutrients. Important 
changes could therefore occur in base and Al saturation, and 
in soil nutrient levels (Table 1, Figure 3). In cropped fields, 
a significant benefit of slash and burn is the rapid release 
of nutrients from the ash to the soil (12, 34). Burning and 
plowing lead to the destruction and rapid decomposition of 
soil organic matter and reduce the contribution of organic 
and microbial processes to nutrient cycling (13). However, 
the fertility status depends on the inevitable loss of soil 
nutrients in crop harvest and additional losses by leaching 
and runoff.

Consequences for agricultural development
Soil acidity and aluminum toxicity constrain agricultural 
production in several ways. Farmers are limited to planting 
crop species or cultivars that tolerate such conditions. 
Many acid soils “fix” or hold phosphorus, making it 
unavailable for plant growth. Soil acidity can also be a 
barrier to root development, limiting a plant ability to reach 
moisture in the sub-soil. In the humid tropics, soil acidity 
and associated problems often lead to land abandonment 
and the perpetuation of slash-and-burn agriculture (33). 
These conditions are inherent to the nature of the soils of 
the rainforest zone. 

Recommendations
Improving and maintaining soil productivity include erosion 
control, liming and fertilizer application. Residues from 
harvests must be used to cover the soil surface in order 
to minimize the effects of erosion especially in cropped 
fields. For nutrients that persist in the soil such as P, Mg 
and K, commercial fertilizers can compensate for nutrients 
taken up by plants or lost by runoff and leaching. For mobile 
nutrients like N, because uptake, runoff and/or leaching can 
be immediate, adding commercial fertilizers is not an option 
but a must and the application must be split.
Between 3.14 t and 7.24 t CaCO

3.ha-1 (or 1.76 t to 5.34 t CaO.
ha-1) must be applied to increase the soil pH and eliminate Al 
toxicity (14). Phosphorus additions must take into account 
both the adsorption capacity and P requirements of the 
soil (20). Phosphorus requirements in soils under different 
land-use systems, as determined by using the relationship 
established by Menzies and Gillman (20) for various humid 
forest zone top-soils of Cameroon, ranged from 119 to 175 
kg.ha-1 (Table 3).
Basic cations must be applied in proportion to achieve an 
ideal soil complex. According to Liebhardt (18), the ideal is 
to have the exchange complex saturated with 65 per cent 
Ca, 10 per cent Mg and 5 per cent K. But fluctuations of 
between 65 and 85 per cent Ca, 6 and 12 per cent Mg and, 2 
and 5 per cent K do not affect the production capacity of the 
soil. Calculations showed that in all the land-use systems, 
none of the plant nutrients fulfils the ideal condition of 



TROPICULTURA

19

saturating the exchange complex stated above. So Ca, Mg 
and K cations have been ideally made adsorbed. According 
to the guidelines advocated by Landon (17), N is rated low 
in all these land-use systems and has been brought up to 
the medium level.
Secondary forests on strongly acid and leached soils depend 
on internal cycling to meet their mineral requirements (13) 
and do not need nutrient management. Recommended 
rates of nutrient application are listed in table 2.

Management options
Farmers finding lime and mineral fertilizers expensive look 
forward to cheaper alternatives. Agroforestry seems to be 
the most appropriate. The use of acid-tolerant species or 
cultivars is the first step for low-input soil management 
(25, 26). In addition, agroforestry is considered particularly 
applicable to marginal soils with severe physical, chemical 
or drought constraints (28). On acid soils of the tropics, the 
fundamental challenge is to recycle the limited nutrients 
available in soil-plant systems (32). Planting nitrogen fixing 
trees and crops in agroforestry system is one low-input 
technology that helps maintain levels of nitrogen, a key 
nutrient for plant growth. 
An even cheap alternative for the farmers of Ngoungoumou 
is the use of wood ash, which is widely available and 
considered as waste by the wood industries. Since the 
government stopped subsidizing the use of commercial 
fertilizers and amendments, the use of wood ash, is a 
justified option, as no farmers have no access to financial 
credit. Ash is a good source of Ca, K, P and Mg (9). Its 

Table 3
Lime, Ca, N, P, Mg and K requirements

Land-use systems        Lime (t ha-1) Ca  N P Mg K

CaCO3 CaO          (t ha-1)                       (kg ha-1)
Sfor
Coco
Yfor
Chro
Crop

7.24
5.82
3.14
4.46
3.24

4.06
3.26
1.76
2.50
5.34

2.97
2.38
1.32
1.61
1.28

0.83
1.00
0.95
0.98
1.00

175
137
147
119
146

144
106
103
  22
    5

161
135
  92
130
  74

application in tropical acid soils can help increasing soil pH 
and neutralizing Al toxicity and at the same time it could 
supply P and K (37, 38). 

Conclusion

The strongly acid soils of Ngoungoumou area are mainly 
composed of sand and clay. They are poor in organic carbon, 
total nitrogen and ECEC. The soil nutrients are mainly stored 
in the top-soil, together with the organic matter. Land-use 
systems significantly affect the clay, silt and sand fractions. 
High proportions of clay are found in soils of secondary 
forests, Chromolaena odorata fallows and less in soils 
under cocoa plantations. Soil pH, exchangeable Al, organic 
carbon, available P, base and Al saturations, exchangeable 
Ca and ECEC significantly changed with the land-use 
systems. Soils of Chromolaena odorata fallows presented a 
higher fertility level than those under secondary forests and 
cocoa plantations. For agricultural development, utilization 
of harvest residues, wood ash or liming; Ca, N, P, K and Mg 
fertilizations according to crop requirement; acid-tolerant 
crops and N fixing trees for acid soils appeared to be the 
most important management options. 
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