Etude comparative de l’irrigation au goutte-à-goutte et à la raie sur une culture de pomme de terre de saison

A. Boujelben, K.B. Mbarek & A. Bel Aid*

Keywords: Potato crop - Furrow irrigation - Drip irrigation - Doses - Agronomic parameters.

Résumé
Dans les conditions d’un climat semi-arié, l’efficience de l’eau d’irrigation à la raie pour une culture de pomme de terre est relativement faible en comparaison avec celle de l’irrigation localisée au goutte-à-goutte. Un essai expérimental a été réalisé à la Station de Recherche Agricole de Chott Mariem située dans le centre est de la Tunisie visant la comparaison de ces deux techniques d’irrigation avec une dose (D = 210 mm) pour la raie et des doses respectives (D); (0,75D) et (0,5D) pour le goutte-à-goutte. Le système goutte-à-goutte avec la dose (D) a engendré les résultats les plus performants au niveau des quantités de matière fraîche et sèche des tiges, des feuilles et des tubercules, du taux de couverture végétale du sol et de la hauteur moyenne des plantes. La réduction de la dose d’irrigation à (0,75D) et (0,5D) avec le système goutte-à-goutte a donné des résultats similaires à ceux obtenus par l’irrigation à la raie avec la dose (D).

Summary
Comparative Study of the Drip and Furrow Irrigation on Seasonable Potato Crop
Under semi-arid climate conditions, use of furrow irrigation for potato is relatively low when compared to drip irrigation. An experimental trial was carried out at the Agricultural Research Station at Chott-Mariem located in the Center East of Tunisia. A drip irrigation system with three amounts (D, 0.75D and 0.5D) was compared to blocked furrows (D) on potato. The drip irrigation system (D = 210 mm) produced best results for dry and fresh matter production in leaves and stems, and in tubers, percentage cover of soil and plant height. Lower amounts of water applied (0.75D and 0.5D) with drip irrigation gives similar results to those obtained with furrow irrigation (D).

Introduction
L’efficacité de l’irrigation permet d’évaluer l’importance des pertes d’eau par rapport aux apports. Elle ne dépasse pas 40 à 60% dans le cas de l’irrigation traditionnelle à la raie (1). Le système goutte-à-goutte, qui a une efficacité de 80 à 90%, limite les pertes d’eau et assure une répartition homogène dans le temps et dans l’espace. Vu les disponibilités limitées de la Tunisie en eau, il serait utile de comparer les deux systèmes d’irrigation sur une culture de pomme de terre cultivée dont certaines variétés sont connues très sensibles au stress hydrique (9).

Dans ce but, un essai expérimental a été implanté dans la Station de Recherche Agricole de Chott Mariem, visant la comparaison de l’irrigation à la raie avec une dose (D=210 mm) et l’irrigation au goutte-à-goutte avec différentes doses: (D); (0,75D) et (0,5D).

Afin d’étudier la réponse de la culture de pomme de terre à la technique d’irrigation et à la dose d’eau apportée, certains paramètres agronomiques, en l’occurrence, le taux de couverture du sol par le végétal, la hauteur moyenne des plantes, les quantités de matière fraîche et de matière sèche des feuilles et des tiges, des tubercules, et le rendement quantitatif ont été évalués.

Matériel et méthodes
L’essai a été conduit dans une parcelle de 0,5 ha (50 m x 100 m). La zone de Chott Mariem est caractérisée par une pluviométrie moyenne annuelle de 350 mm. Les températures moyennes des maxima et des minima sont respectivement 14 °C et 23 °C. Le vent est généralement constant. L’humidité relative moyenne est de l’ordre de 68%.

Le sol a une texture sablonne-argileuse et une pente de l’ordre de 1,3% dans le sens des bifrons. Sa densité apparente moyenne est de 1,52. Ses réserves utiles en eau sont de 8% (pondérales). Le taux de matrice organique est de l’ordre de 0,5%. Son pH est alcalin et varie de 8 à 8,5 selon la profondeur. Le taux de calcaire actif varie de 0,3 à 0,4% suivant la profondeur. La conductivité électrique de l’extract de la pâte saturée est en moyenne 0,15 mS/cm.

Le précédent culturel était une culture de légumineuse à graines (fève). La préparation du sol consistait à un gros labour suivi de deux recouvrements pour l’enfouissement de la fumure de fond. En effet, la parcelle a reçu 25 t/ha de fumier de bœuf en semis d’origine bovine, bien décomposée, ayant une salinité de 2 g de NaCl par kg de fumier. La fumure minérale est composée de 150 unités/ha de superphosphate (45%) et 200 unités/ha de

*Département des Sciences du Milieu Naturel, École Supérieure d’Horticulure, B.P. 47, 4042 Chott Mariem (Sousse) - Tunisie.
Reçu le 23.09.98 et accepté pour publication le 01.06.01.
sulfate de potassium. La fumure d’entretien consistait à 100 unités/ha de nitrate d’ammonium (33,5%) réparties en trois apports au cours du cycle végétatif de la culture. La variété Sputa, très estimée par les agriculteurs et les consommateurs tunisiens a été utilisée. Elle est demi-précoce et relativement tolérante au stress hydrique (7). La plantation a été effectuée avec une machine planteuse-buteuse, le 2 février 1996, avec une densité de 42000 plants/ha soit 3 plants par mètre linéaire sur des billons de 90 m de long, espacés de 0,8 m. La récolte a eu lieu 118 jours après la plantation. Un désherbage chimique a été réalisé en prélevé. Le produit utilisé est le lexon dont la matière active est la méthibusine, à raison de 700 g/ha. Au cours de la culture, quatre traitements anti-mildiou ont été effectués en alternance avec les produits: Manébène 80 et précursoir N. L’eau d’irrigation provient du réseau collectif de Nebhana, ayant un résidu sec de 1 g/l, un pH de 8 et une conductivité électrique de 1 mS/cm. En se basant sur la méthode de calcul des besoins en eau des cultures, proposée par la F.A.O. (3) et les données climatiques de la région, on a déterminé les besoins en eau de la culture de pomme de terre de saison. Ils s’élèvent à 555 mm. Durant le cycle végétatif de la culture, la pluviométrie enregistrée a été de 345 mm. Ceci a limité le nombre d’irrigation à 3 et la quantité totale d’eau administrée à 210 mm, ce qui représente la dose la plus élevée (D). Plusieurs systèmes d’irrigation peuvent être utilisés pour la pomme de terre. Les systèmes les plus utilisés sont l’irrigation à la raie (ou par sillons), par aspersion et au goutte-à-goutte. L’irrigation à la raie est peu coûteuse car elle ne nécessite pas une infrastructure de base. Mais le sol doit être bien nivelé lors de sa préparation, avec une pente inférieure à 2%, pour éviter l’érosion et homogénéiser la répartition de l’eau le long des sillons (5). La consommation en eau d’irrigation est généralement élevée. L’établissement du sol, couvrant mouillé, facilite l’invasion par les mauvaises herbes et entrave le déroulement des travaux d’entretien de la culture. L’aspersion qui permet de lutter contre la grèze blanche (assez redoutable en Tunisie), assure une meilleure uniformité d’arrosage. Elle exige une eau de bonne qualité et nécessite l’achat de matériel approprié. Elle est mal adaptée aux zones ventées (8). L’irrigation localisée au goutte-à-goutte permet une utilisation plus rationnelle de l’eau. Elle se prête bien à l’automatisation. Par opposition aux techniques précédentes, avec le goutte-à-goutte, le développement des adventices est limité. Les travaux d’entretien sont possibles à tout moment. La partie aérienne de la plante n’est pas mouillée et par conséquent les attaques par le mildiou (parasite le plus redoutable sur la pomme de terre en Tunisie) sont réduites. Seulement, ce système n’est pas épargné d’inconvénients. Il nécessite des investissements plus importants pour l’achat du matériel et exige une eau moins chargée à cause des risques d’obstruction et d’accumulation des sels (6). Dans le cas de notre essai, nous avons adopté les deux systèmes d’irrigation à la raie et au goutte-à-goutte. L’installation d’irrigation au goutte-à-goutte est composée d’une station de tête équipée de deux filtres à gravier et à tamis et d’un mélangeur d’engrais. Le porte-rampes est constitué par un tuyau en polyéthylène haute densité de diamètre 50/63 mm. Les rampes, en polyéthylène tasse densité de diamètre 13/16 mm, sont munies de goutteurs Nétafim de débit nominal 2 l/h et espacés de 60 cm. Le dispositif expérimental adopté est le split-bloc avec trois répétitions et quatre traitements, en utilisant les deux systèmes d’irrigation: à la raie avec une dose D d’une part, et au goutte-à-goutte avec trois doses différentes: D; 0,75D et 0,5D d’autre part (Figure 1): Chaque traitement ou mode d’irrigation est formé de 3 billons, seulement le billon du milieu a fait l’objet de mesures et de comptages. Les deux autres billons ont été utilisés comme boursoufl.
Cent jours après la plantation, pour chaque traitement, trois parcelles élémentaires de 5 mètres de long ont été délimitées à travers les billets en positions amont ou proximale, médiane et aval ou distale (Figure 1). Des observations et des mesures ont été effectuées au niveau de chaque traitement suivant la position de la parcelle élémentaire et ce pour déceler les effets du mode d'irrigation et de l'uniformité de distribution de l'eau d'irrigation sur :
- le taux de couverture du sol par le végétal (C); Il est déterminé à l'aide d'une grille rectangulaire (80 cm x 60 cm), comprenant 48 mailles (10 cm x 10 cm). Pour chaque parcelle élémentaire, trois mesures ont été réalisées en plaçant correctement la grille au-dessus des plantes du billet central. Puis, on compte le nombre de mailles interceptées par le feuillage. (C) est calculé comme suit:
 C = 100 x (nombre de mailles interceptées par le feuillage / 48);
- la hauteur moyenne des plantes représente la moyenne de cinq mesures de la longueur de la tige la plus longue de cinq plantes choisies au hasard par parcelle élémentaire;
- les quantités de matière fraîche des feuilles et des tiges, et des tubercules: on a prélevé la partie aérienne puis les tubercules des cinq plantes ainsi choisies. On les a pesé pour chaque plante séparément;
- les quantités de matière sèche des feuilles et des tiges, et des tubercules: ces mêmes échantillons ont été mis dans une étuve à une température de 105 °C durant 48 h. Puis on a effectué les pesées de la matière sèche,
- le rendement moyen en tubercules par plante: le niveau de chaque traitement, vingt plantes, choisies au hasard le long du billet, ont été récoltées 118 jours après la plantation. Après pesage, on a déterminé le rendement moyen par plante.
Les résultats ainsi obtenus ont été soumis à l'analyse de la variance. Par la suite, on a effectué une comparaison des moyennes à l'aide du test de 'a plus petite différence significative (P.P.D.S.).

Résultats et discussion

Le taux de couverture du sol par le végétal
Les résultats des mesures du taux de couverture du sol par le végétal pour les différents traitements sont présentés dans la figure 2. Pour un même mode d'irrigation et une même dose, la position de la parcelle élémentaire a un effet significatif, au seuil de 5%, sur le taux de couverture du sol par le végétal. Cette différence pourrait être due à une mauvaise uniformité de distribution de l'eau d'irrigation le long du billet des deux modes d'irrigation.
Concernant le mode d'irrigation et son interaction avec la position de la parcelle élémentaire, il n'y a pas de différence significative (Tableau 1). Ceci pourrait indiquer que l'irrigation à la raie et au goutte-à-goutte avec les différentes doses ont eu la même incidence sur le taux de couverture du sol par le végétal. Cependant, le calcul des moyennes du taux de couverture du sol par le végétal, sans tenir compte de la position de la parcelle élémentaire, a montré que le goutte-à-goutte avec la dose (D) a donné le taux le plus élevé (37.4 %) (Tableau 2). L'irrigation à la raie avec la dose (D) et au goutte-à-goutte avec des doses respectives 0,75D et 0,5D ont donné des résultats similaires (de l'ordre de 33%). Il est clair que le goutte-à-goutte avec la dose D a favorisé le développement du taux de couverture du sol par le végétal.

La hauteur moyenne des plantes
Il y a une différence hautement significative pour le mode d'irrigation et la position de la parcelle élémentaire au seuil de 1%. De même, il y a une différence significative au seuil de 5% pour l'interaction de ces deux paramètres (Tableau 1). Le goutte-à-goutte, avec la dose (D), a engendré la hauteur de plante la plus élevée au niveau des parcelles élémentaires proximales et distales (Figure 3).

![Figure 2](image)

Le goutte-à-goutte avec les doses respectives (D) et (0,75D) a donné une même hauteur moyenne (26 cm). Par contre, l'irrigation à la raie avec la dose (D) et au goutte-à-goutte avec la dose (0,5D) ont donné une hauteur moyenne par plante moins élevée (24 cm) (Tableau 2). Ceci pourrait indiquer qu'avec une dose d'irrigation réduite à moitié (0,5D), le goutte-à-goutte a donné un résultat comparable à celui de la raie. De même, la réduction de la dose d'irrigation au 3/4 avec le goutte-à-goutte n'a pas d'incidence négative sur la hauteur de la plante.

Le mode d'irrigation et son interaction avec la position de la parcelle élémentaire ont un effet significatif au seuil de 5% sur la hauteur moyenne des plantes (Tableau 1). Ceci montre que pour une même position de la parcelle élémentaire et une même dose d'irrigation, la hauteur moyenne des plantes diffère selon le mode d'irrigation (goutte-à-goutte ou raie). Ces résultats ne sont pas conformes à ceux obtenus au niveau du taux de couverture du sol par le végétal. En effet, la variété de pomme de terre utilisée (Spunta) est caractérisée par un port érigé plutôt qu'étaillé (4).

Quantité de matière fraîche des feuilles et des tiges
Concernant ce paramètre, l'analyse de la variance a montré que les différences sont non significatives pour l'effet du mode d'irrigation, de la position de la parcelle élémentaire et de leur interaction (Tableau 1).
Cependant, la comparaison des moyennes des quantités de matière fraîche des feuilles et des tiges par mode d’irrigation a montré que le goutte-à-goutte avec la dose (D) a donné la quantité la plus élevée de matière sèche des feuilles et des tiges (214 g/plante). Alors que pour les autres, il n'y a pas eu de différence significative (115 g/plante) (Tableau 2). Il est clair que la quantité d'eau administrée par le goutte-à-goutte avec la dose (D = 210 mm) est suffisante pour favoriser la synthèse de la matière sèche et le développement végétatif de la plante. Ce résultat confirme les observations de Maormicole et al. (3) qui indiquent que la pomme de terre est généralement sensible au déficit en eau dans le sol. Il peut entraîner une réduction du développement de la surface foliaire et de la photosynthèse.

Quantité de matière sèche des feuilles et des tiges

L'effet de la position de la parcelle élémentaire sur la quantité de matière sèche des feuilles et des tiges est significatif au seuil de 5% (Tableau 1). Le mode d'irrigation et son interaction avec la position de la parcelle élémentaire ont donné des résultats non significatifs. Cependant, la quantité de matière sèche des feuilles et des tiges est plus élevée au niveau des parcelles proximales pour tous les modes d'irrigation (Figure 4).

La comparaison des moyennes a montré que le goutte-à-goutte avec la dose (D) a donné la quantité la plus élevée de matière sèche des feuilles et des tiges (202 g/plante). L'irrigation à la raie et au goutte-à-goutte avec les doses (0,75D) et (0,5D) ont donné les quantités les plus faibles (respectivement 15,8 et 15,2 g/plante) (Tableau 2). Ceci pourrait être expliqué par l'amélioration de la masse de matière verte qui s'est répercutée positivement sur la matière sèche au niveau de la partie aérienne de la plante.

Quantité de matière fraîche des tubercules

Un effet hautement significatif a été décelé au niveau du mode d'irrigation et non significatif au niveau de la position de la parcelle élémentaire et de l'interaction (Tableau 1). L'irrigation à la raie et au goutte-à-goutte avec la dose (D) ont engendré des quantités plus élevées et similaires de matière fraîche des tubercules (respectivement 566 et 624 g/plante). Des quantités plus faibles 446 et 363 g/plante ont été obtenues au niveau du goutte-à-goutte avec les doses respectives (0,75D) et (0,5D) (Tableau 2).

Quantité de matière sèche des tubercules

L'analyse de la variance a montré un effet hautement significatif pour le mode d'irrigation et la position de la parcelle élémentaire et non significatif pour l'interaction de ces deux facteurs. Au niveau des parcelles proximales et à travers les deux modes d'irrigation, la quantité de matière sèche des tubercules est plus élevée (Figure 5).

La comparaison des moyennes a montré que la quantité de matière sèche des tubercules au niveau du goutte-à-goutte avec la dose (D) est la plus importante (93 g/plante). Il ressort qu'au niveau de ce traitement, l'eau disponible à la plante est assez imposante et que cette dernière en a bien profitée pour accroître la photosynthèse. L'irrigation à la raie (D) et au goutte-à-goutte (0,75D) ont engendré des quantités de matière sèche similaires (respectivement 73,2 et 68,9 g/plante). Avec la dose (0,5D), le goutte-à-goutte a donné la quantité la plus faible en matière sèche (49,4 g/plante). Il semble à ce niveau, que la quantité d'eau administrée est assez réduite et la plante a subi un stress hydrique.
Tableau 2
Résultats de la comparaison des moyennes relatives aux paramètres étudiés

<table>
<thead>
<tr>
<th>Source de variation</th>
<th>Taux de couverture du sol par le végétal (en %)</th>
<th>Hauteur moyenne des plantes (en cm)</th>
<th>Quantité de matière fraîche des feuilles et des tiges (en g/plante)</th>
<th>Quantité de matière sèche des feuilles et des tiges (en g/plante)</th>
<th>Quantité de matière fraîche des tubercules (en g/plante)</th>
<th>Quantité de matière sèche des tubercules (en g/plante)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raie (D)</td>
<td>33,3 (b)</td>
<td>24 (b)</td>
<td>111 (b)</td>
<td>15,8 (b)</td>
<td>523 (c)</td>
<td>73,2 (b)</td>
</tr>
<tr>
<td>Goutte-à-goutte (D)</td>
<td>37,4 (a)</td>
<td>28 (a)</td>
<td>141 (a)</td>
<td>20,2 (a)</td>
<td>728 (a)</td>
<td>83 (a)</td>
</tr>
<tr>
<td>Goutte-à-goutte (0,75D)</td>
<td>32,4 (b)</td>
<td>26,2 (a)</td>
<td>120 (b)</td>
<td>16,6 (b)</td>
<td>697 (b)</td>
<td>68,9 (b)</td>
</tr>
<tr>
<td>Goutte-à-goutte (0,5D)</td>
<td>32,1 (b)</td>
<td>24,1 (b)</td>
<td>115 (b)</td>
<td>15,2 (b)</td>
<td>507 (c)</td>
<td>49,4 (c)</td>
</tr>
</tbody>
</table>

(a), (b), (c): Les moyennes de la même colonne suivies par la même lettre ne diffèrent pas entre elles au seuil de 5%.

Figure 4: Effets du mode d'irrigation et de la position de la parcelle élémentaire sur la quantité de matière sèche des feuilles et des tiges (en g/plante).

Figure 5: Effets du mode d'irrigation et de la position de la parcelle élémentaire sur la quantité de matière sèche des tubercules (en g/plante).

Rendement par plante
L'analyse de la variance a montré qu'il y a un effet hau-
tement significatif pour le mode d'irrigation avec un coefficient de variation de 8,6 % (Tableau 3).

Tableau 3
Résumé de la somme des carrés des écarts et du coefficient de variation du rendement par plante

<table>
<thead>
<tr>
<th>Sources de variations</th>
<th>D.D.L.</th>
<th>Rendement par plante</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocs</td>
<td>2</td>
<td>0,0531 ns</td>
</tr>
<tr>
<td>Modes d'irrigation</td>
<td>3</td>
<td>0,031 **</td>
</tr>
<tr>
<td>Coefficient de variation</td>
<td></td>
<td>8,6 %</td>
</tr>
</tbody>
</table>

ns: non significatif
**: Significatif au seuil de 1%.

La comparaison des moyennes a montré que le goutte-
à-goutte avec la dose (D) a engendré le rendement le plus élevé, estimé à 0,728 kg/plante. Les rendements obtenus au niveau des autres traitements sont moins élevés. Les rendements des traitements d'irrigation à la raie (D) et au goutte-à-goutte (0,5D) ne diffèrent pas entre eux. Ils sont estimés respectivement à 0,523 et 0,507 kg/plante (Tableau 2). Par contre, au niveau de la raie, il y a eu une certaine hétérogénéité de répartition de l'eau d'irrigation. Il serait possible que le goutte-
à-goutte avec la dose (D) a permis aux plantes de pomme de terre de profiter au maximum des quantités d'eau administrées et par conséquent de stimuler la photo-
synthèse.

Au niveau du goutte-à-goutte, avec les doses (0,75D) et
(0,5D), les quantités d'eau apportées sont relativement faibles, ce qui pourrait engendrer un stress hydrique pour les plantes de pomme de terre.

Conclusion
D'après les résultats obtenus lors de cet essai, on peut retenir que:
- l'irrigation au goutte-à-goutte avec les doses (D = 210
 mm et 0,75D = 158 mm) comparée à celle à la raie
 avec la dose (D) a permis une nette amélioration des
 performances de la culture de pomme de terre (crois-
sance, taux de couverture du sol par le végétal, ren-
dement, etc...);
• avec une dose d’irrigation réduite à moitié (0,5D = 105 mm), le goutte-à-goutte un résultat comparable à celui de la raie (D) au niveau du taux de couverture du sol par le végétal, de la hauteur moyenne des plantes et des quantités de matière fraîche et sèche des feuilles et des tiges. De même, la réduction de la dose d’irrigation au 3/4 avec le goutte-à-goutte n’a pas d’incidence négative sur la hauteur de la plante;
• une dose d’irrigation de (0,5D = 105 mm) apportée par le goutte-à-goutte s’est avérée insuffisante puisque les quantités de matières fraîche et sèche des tubercules sont réduites significativement;
• les rendements de la culture irriguée à la raie (D) et au goutte-à-goutte (0,5D) sont comparables (respectivement 0,523 et 0,507 kg/plante), ce qui a entrainé une économie en eau d’irrigation de l’ordre de 50%;
• l’irrigation au goutte-à-goutte a permis une meilleure distribution de l’eau dans le sol et par conséquent une meilleure alimentation hydrique de la culture. Ce qui a contribué à l’amélioration des rendements en tubercules: 32,8 t/ha contre 22 t/ha pour la dose (D) apportée respectivement au goutte-à-goutte et à la raie. Des rendements de 25,5 t/ha et 21,3 t/ha sont obtenus respectivement avec les doses (0,75D) et (0,5D) suite à des économies en eau d’irrigation respectives de 25 et 50%.

Références bibliographiques

4. Hannachi C., 1996. Amélioration de la tolérance de la pomme de terre (Solanum tuberosum L.) à la saleté (NaCl) par voie biotechnologique. These présentée à la Faculté des Sciences Agronomiques et Biologie Appliquée de l’Université de Gent (Belgique), 152p.

A. Boujelben, Tunisien, Maire assistant en Génie rural
K. Ben Mbarek, Tunisien, Ingénieur principal spécialisé, Phytotechnie amélioration des plantes
A. Bel Aid, Tunisien, Ingénieur adjoint, Ecole Supérieure d’Horticulture et d’Elevage de Chott Mestirien, Sousse, Tunisie